import pandas as pd import numpy as np import re import snscrape.modules.twitter as sntwitter from transformers import pipeline import plotly.express as px import joblib from sklearn.metrics import classification_report,confusion_matrix import nltk nltk.download("punkt") nltk.download('stopwords') from nltk.tokenize import word_tokenize def get_tweets(username, length=10, option = None): # Creating list to append tweet data to query = username + " -filter:links filter:replies lang:id" if option == "Advanced": query = username tweets = [] # Using TwitterSearchScraper to scrape # Using TwitterSearchScraper to scrape for i,tweet in enumerate(sntwitter.TwitterSearchScraper(query).get_items()): if i>=length: break tweets.append([tweet.content]) # Creating a dataframe from the tweets list above tweets_df = pd.DataFrame(tweets, columns=["content"]) tweets_df['content'] = tweets_df['content'].str.replace('@[^\s]+','') tweets_df['content'] = tweets_df['content'].str.replace('#[^\s]+','') tweets_df['content'] = tweets_df['content'].str.replace('http\S+','') tweets_df['content'] = tweets_df['content'].str.replace('pic.twitter.com\S+','') tweets_df['content'] = tweets_df['content'].str.replace('RT','') tweets_df['content'] = tweets_df['content'].str.replace('amp','') # remove emoticon tweets_df['content'] = tweets_df['content'].str.replace('[^\w\s#@/:%.,_-]', '', flags=re.UNICODE) # remove whitespace leading & trailing tweets_df['content'] = tweets_df['content'].str.strip() # remove multiple whitespace into single whitespace tweets_df['content'] = tweets_df['content'].str.replace('\s+', ' ') # remove row with empty content tweets_df = tweets_df[tweets_df['content'] != ''] return tweets_df def get_sentiment(df,option_model): id2label = {0: "negatif", 1: "netral", 2: "positif"} if option_model == "IndoBERT (Accurate,Slow)": classifier = pipeline("sentiment-analysis",model = "indobert") df['sentiment'] = df['content'].apply(lambda x: id2label[classifier(x)[0]['label']]) elif (option_model == "Logistic Regression (Less Accurate,Fast)"): df_model = joblib.load('assets/df_model.pkl') classifier = df_model[df_model.model_name == "Logistic Regression"].model.values[0] df['sentiment'] = df['content'].apply(lambda x: id2label[classifier.predict([x])[0]]) else : df_model = joblib.load('assets/df_model.pkl') classifier = df_model[df_model.model_name == option_model].model.values[0] df['sentiment'] = df['content'].apply(lambda x: id2label[classifier.predict([x])[0]]) # change order sentiment to first column cols = df.columns.tolist() cols = cols[-1:] + cols[:-1] df = df[cols] return df def get_bar_chart(df): df= df.groupby(['sentiment']).count().reset_index() # plot barchart sentiment # plot barchart sentiment fig = px.bar(df, x="sentiment", y="content", color="sentiment",text = "content", color_discrete_map={"positif": "#00cc96", "negatif": "#ef553b","netral": "#636efa"}) # hide legend fig.update_layout(showlegend=False) # set margin top fig.update_layout(margin=dict(t=0, b=150, l=0, r=0)) # set title in center # set annotation in bar fig.update_traces(textposition='outside') fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide') # set y axis title fig.update_yaxes(title_text='Jumlah Komentar') return fig def plot_model_summary(df_model): df_scatter = df_model[df_model.set_data == "test"][["score","time","model_name"]] # plot scatter fig = px.scatter(df_scatter, x="time", y="score", color="model_name", hover_data=['model_name']) # set xlabel to time (s) fig.update_xaxes(title_text="time (s)") # set ylabel to accuracy fig.update_yaxes(title_text="accuracy") # set point size fig.update_traces(marker=dict(size=10)) fig.update_layout(autosize = False,margin=dict(t=0, l=0, r=0),height = 400) return fig def plot_clfr(df_model,option_model,df): df_clfr = pd.DataFrame(classification_report(df["label"],df[f"{option_model}_pred"],output_dict=True)) # heatmap using plotly df_clfr.columns = ["positif","netral","negatif","accuracy","macro_avg","weighted_avg"] fig = px.imshow(df_clfr.T.iloc[:,:-1], x=df_clfr.T.iloc[:,:-1].columns, y=df_clfr.T.iloc[:,:-1].index) # remove colorbar fig.update_layout(coloraxis_showscale=False) fig.update_layout(coloraxis_colorscale='gnbu') # get annot annot = df_clfr.T.iloc[:,:-1].values # add annot and set font size fig.update_traces(text=annot, texttemplate='%{text:.2f}',textfont_size=12) # set title to classification report fig.update_layout(title_text="📄 Classification Report") return fig def plot_confusion_matrix(df_model,option_model,df): # plot confusion matrix cm = confusion_matrix(df['label'],df[f"{option_model}_pred"]) fig = px.imshow(cm, x=['negatif','netral','positif'], y=['negatif','netral','positif']) # remove colorbar fig.update_layout(coloraxis_showscale=False) fig.update_layout(coloraxis_colorscale='gnbu',title_text = "📊 Confusion Matrix") # get annot annot = cm # add annot fig.update_traces(text=annot, texttemplate='%{text:.0f}',textfont_size=15) return fig