Spaces:
Sleeping
Sleeping
File size: 79,905 Bytes
366b3ed 32fd3bc 366b3ed 32fd3bc 366b3ed 32fd3bc 366b3ed 32fd3bc 366b3ed 32fd3bc cf24c7f 32fd3bc 366b3ed bb9ff2a 366b3ed c2c0f34 366b3ed c2c0f34 e41eb26 c2c0f34 366b3ed e41eb26 366b3ed cf24c7f 366b3ed bb9ff2a cf24c7f 366b3ed cf24c7f 366b3ed bb9ff2a 366b3ed b445748 366b3ed b445748 366b3ed b445748 366b3ed b445748 366b3ed c2c0f34 366b3ed c2c0f34 366b3ed c2c0f34 366b3ed c2c0f34 366b3ed c2c0f34 366b3ed 49d979b 366b3ed c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b e41eb26 a56f324 c2c0f34 a56f324 c2c0f34 c555c66 e41eb26 c2c0f34 49d979b c2c0f34 cf24c7f 49d979b c2c0f34 cf24c7f c2c0f34 cf24c7f c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b e41eb26 49d979b c2c0f34 49d979b c2c0f34 49d979b e41eb26 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 49d979b c2c0f34 366b3ed 5b26b70 366b3ed 5b26b70 366b3ed 5b26b70 c2c0f34 366b3ed 5b26b70 0c277b3 366b3ed 5b26b70 366b3ed 5b26b70 366b3ed 5b26b70 c2c0f34 5b26b70 366b3ed 5b26b70 366b3ed cf24c7f 366b3ed 5b26b70 cf24c7f 366b3ed 5b26b70 49d979b 5b26b70 366b3ed 49d979b 0c277b3 5b26b70 0c277b3 5b26b70 366b3ed 5b26b70 366b3ed 5b26b70 366b3ed 0c277b3 366b3ed 5b26b70 0c277b3 5b26b70 366b3ed 5b26b70 366b3ed 0c277b3 5b26b70 0c277b3 366b3ed 5b26b70 366b3ed 5b26b70 366b3ed 5b26b70 366b3ed 5b26b70 366b3ed 5b26b70 366b3ed 5b26b70 366b3ed 5b26b70 366b3ed 49d979b 366b3ed 49d979b c2c0f34 4e5523a 366b3ed c2c0f34 366b3ed 5b26b70 366b3ed c2c0f34 366b3ed 4e5523a 366b3ed c2c0f34 366b3ed c2c0f34 5b26b70 c2c0f34 366b3ed c2c0f34 366b3ed c2c0f34 366b3ed 0efda62 366b3ed 0efda62 366b3ed 0efda62 366b3ed 0efda62 366b3ed ae7c270 366b3ed b445748 366b3ed b445748 366b3ed 32fd3bc 366b3ed cf24c7f 366b3ed cf24c7f 366b3ed cf24c7f 366b3ed b445748 366b3ed b445748 366b3ed ae7c270 366b3ed ae7c270 366b3ed e41eb26 366b3ed 0efda62 366b3ed 0efda62 366b3ed 0efda62 366b3ed 0efda62 366b3ed 4e5523a 366b3ed ae7c270 cd73b11 ae7c270 cd73b11 ae7c270 366b3ed ae7c270 366b3ed ae7c270 366b3ed ae7c270 366b3ed ae7c270 366b3ed ae7c270 366b3ed cf24c7f 366b3ed 0efda62 cf24c7f 0efda62 49d979b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 |
import json
import logging
import os
import re
import subprocess
import uuid
from concurrent.futures import ThreadPoolExecutor, as_completed
from io import BytesIO
from queue import Queue
from typing import Any, Dict, List, Optional
import pandas as pd
import plotly.express as px
import PyPDF2
import streamlit as st
from dotenv import load_dotenv
from openai import OpenAI
from pydantic import BaseModel
from supabase import Client, create_client
# Set page config - MUST be the first Streamlit command
st.set_page_config(page_title="π PDF to Exam Questions Generator with Supabase Upload", layout="wide")
# Load environment variables from .env file (if present)
load_dotenv()
# Check for required environment variables
required_env_vars = {
"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY"),
"SUPABASE_DB_URL": os.getenv("SUPABASE_DB_URL"),
"SUPABASE_API_KEY": os.getenv("SUPABASE_API_KEY")
}
missing_vars = [var for var, value in required_env_vars.items() if not value]
if missing_vars:
st.error(f"Missing required environment variables: {', '.join(missing_vars)}")
st.stop()
# Set up logging
class StringListHandler(logging.Handler):
def __init__(self):
super().__init__()
self.logs = []
def emit(self, record):
self.logs.append(self.format(record))
def get_logs(self):
return "\n".join(self.logs)
def clear(self):
self.logs = []
# Set up logging with our custom handler
log_handler = StringListHandler()
log_handler.setFormatter(logging.Formatter('%(levelname)s: %(message)s'))
logging.getLogger().addHandler(log_handler)
logging.getLogger().setLevel(logging.INFO)
# Add a filter to suppress HTTP request logging from Supabase and related libraries.
class HttpRequestFilter(logging.Filter):
def filter(self, record):
if "HTTP Request:" in record.getMessage():
return False
return True
log_handler.addFilter(HttpRequestFilter())
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
# Load environment variables from .env file (if present)
load_dotenv()
# Constants
EXAM_TYPES = ["SAT", "IELTS", "TOEFL"]
DIFFICULTY_LEVELS = ["Easy", "Medium", "Hard", "Very Hard"]
REQUIRED_FIELDS = [
"exam_type", "content_type", "exam_section", "domain", "subdomain",
"topic", "difficulty_level", "reading_passage", "question_text",
"option_a", "option_b", "option_c", "option_d", "correct_answer",
"explanation", "is_active", "source_text"
]
class ExamQuestion(BaseModel):
exam_type: str
content_type: str = "Generated"
exam_section: str
domain: str
subdomain: str
topic: str
difficulty_level: str = "Medium"
reading_passage: str
reading_passage_title: Optional[str] = None
question_text: str
option_a: str
option_b: str
option_c: str
option_d: str
correct_answer: str
explanation: str
source_text: str # The original text from which the question was generated
is_active: bool = True
class ExamQuestionResponse(BaseModel):
questions: List[ExamQuestion]
# Set up OpenAI client
try:
client = OpenAI(api_key=required_env_vars["OPENAI_API_KEY"])
logging.info("OpenAI client initialized successfully.")
except Exception as e:
logging.error(f"Failed to initialize OpenAI client: {e}")
st.error(f"Failed to initialize OpenAI client: {str(e)}")
# Set up Supabase client
SUPABASE_URL = required_env_vars["SUPABASE_DB_URL"]
SUPABASE_API_KEY = required_env_vars["SUPABASE_API_KEY"]
supabase: Client = create_client(SUPABASE_URL, SUPABASE_API_KEY)
# Create a thread-safe queue for logging
log_queue = Queue()
def safe_st_warning(message: str):
"""Thread-safe way to queue warning messages"""
log_queue.put(("warning", message))
def safe_st_error(message: str):
"""Thread-safe way to queue error messages"""
log_queue.put(("error", message))
# Define the domain structures
domain_structures = {
"SAT": """SAT Domains and Subdomains:
1. Reading and Writing:
- Craft and Structure:
* Words in Context
* Text Structure and Purpose
* Cross-Text Connections
- Information and Ideas:
* Central Ideas and Details
* Command of Textual Evidence
* Command of Quantitative Evidence
* Inferences
- Standard English Conventions:
* Boundaries
* Form, Structure, and Sense
- Expression of Ideas:
* Transitions
* Rhetorical Synthesis
2. Mathematics:
- Algebra:
* Linear equations in one variable
* Linear equations in two variables
* Linear functions
* Systems of two linear equations in two variables
* Linear inequalities in one or two variables
- Advanced Mathematics:
* Equivalent expressions
* Nonlinear equations in one variable and systems of equations in two variables
* Nonlinear functions
- Problem Solving and Data Analysis:
* Ratios, rates, proportional relationships, and units
* Percentages
* One-variable data: distributions and measures of center and spread
* Two-variable data: models and scatterplots
* Probability and conditional probability
* Inference from sample statistics and margin of error
* Evaluating statistical claims: observational studies and experiments
- Geometry and Trigonometry:
* Area and volume
* Lines, angles, and triangles
* Right triangles and trigonometry
* Circles""",
"IELTS": """IELTS Domains and Subdomains:
1. Reading:
- Information Location:
* Scanning for Details
* Skimming for Main Ideas
* Locating Specific Information
* Finding Supporting Evidence
- Critical Analysis:
* Author's Purpose
* Text Organization
* Opinion and Attitude
* Argument Analysis
- Vocabulary and Reference:
* Word Meaning in Context
* Reference Words
* Paraphrase Recognition
* Academic Vocabulary
2. Writing:
- Task Analysis:
* Data Interpretation
* Process Description
* Compare and Contrast
* Problem and Solution
- Essay Development:
* Argument Construction
* Evidence Support
* Coherence and Cohesion
* Academic Style
- Language Control:
* Grammar Range
* Vocabulary Usage
* Sentence Structure
* Punctuation
3. Speaking:
- Personal Expression:
* Self Introduction
* Personal Experience
* Opinion Expression
* Future Plans
- Topic Development:
* Extended Discourse
* Topic Analysis
* Example Provision
* Abstract Discussion
- Communication Skills:
* Fluency and Coherence
* Pronunciation
* Interactive Communication
* Response Relevance
4. Listening:
- Academic Understanding:
* Lecture Comprehension
* Discussion Analysis
* Main Points Identification
* Detail Recognition
- Pragmatic Understanding:
* Speaker Attitude
* Function of Utterances
* Degree of Certainty
* Speaker Relationship
- Connecting Information:
* Information Organization
* Connecting Content
* Understanding Examples
* Making Inferences
5. Speaking:
- Independent Tasks:
* Opinion Expression
* Personal Experience
* Preference Justification
* Choice Explanation
- Integrated Tasks:
* Lecture Summary
* Reading-Listening Integration
* Campus Situation Response
* Academic Topic Discussion
- Delivery Skills:
* Pronunciation
* Intonation
* Rhythm and Pacing
* Natural Flow
6. Writing:
- Independent Writing:
* Essay Organization
* Thesis Development
* Evidence Support
* Conclusion Writing
- Integrated Writing:
* Source Integration
* Information Synthesis
* Accurate Reporting
* Response Organization
- Language Control:
* Grammar Accuracy
* Vocabulary Range
* Sentence Variety
* Academic Style""",
"TOEFL": """TOEFL Domains and Subdomains:
1. Reading:
- Comprehension:
* Main Idea and Details
* Inference Making
* Author's Purpose
* Vocabulary in Context
- Analysis:
* Text Organization
* Information Integration
* Argument Evaluation
* Evidence Assessment
- Academic Skills:
* Paraphrase Recognition
* Summary Skills
* Table Completion
* Classification
2. Listening:
- Academic Understanding:
* Lecture Comprehension
* Discussion Analysis
* Main Points Identification
* Detail Recognition
- Pragmatic Understanding:
* Speaker Attitude
* Function of Utterances
* Degree of Certainty
* Speaker Relationship
- Connecting Information:
* Information Organization
* Connecting Content
* Understanding Examples
* Making Inferences
3. Speaking:
- Independent Tasks:
* Opinion Expression
* Personal Experience
* Preference Justification
* Choice Explanation
- Integrated Tasks:
* Lecture Summary
* Reading-Listening Integration
* Campus Situation Response
* Academic Topic Discussion
- Delivery Skills:
* Pronunciation
* Intonation
* Rhythm and Pacing
* Natural Flow
4. Writing:
- Independent Writing:
* Essay Organization
* Thesis Development
* Evidence Support
* Conclusion Writing
- Integrated Writing:
* Source Integration
* Information Synthesis
* Accurate Reporting
* Response Organization
- Language Control:
* Grammar Accuracy
* Vocabulary Range
* Sentence Variety
* Academic Style"""
}
def extract_text_from_pdf(pdf_file) -> str:
"""
Extracts all text from a PDF file and returns it as a single string.
"""
try:
# Convert to BytesIO if needed
if isinstance(pdf_file, (str, bytes)):
pdf_file = BytesIO(pdf_file)
# Seek to beginning of file to ensure we can read it
pdf_file.seek(0)
reader = PyPDF2.PdfReader(pdf_file)
text = ""
logging.info(f"Processing PDF with {len(reader.pages)} pages")
# Extract text from all pages
for page_num in range(len(reader.pages)):
try:
page = reader.pages[page_num]
page_text = page.extract_text()
if page_text:
text += f"\n--- Page {page_num + 1} ---\n{page_text}\n"
logging.info(f"Successfully extracted text from page {page_num + 1}")
else:
logging.warning(f"No text extracted from page {page_num + 1}")
except Exception as e:
logging.error(f"Error processing page {page_num + 1}: {str(e)}")
continue
if not text.strip():
logging.error("No text was extracted from any page of the PDF")
return ""
logging.info(f"Successfully extracted {len(text)} characters of text")
# Log a preview of the extracted text
preview = text[:500] + "..." if len(text) > 500 else text
logging.info(f"Text preview:\n{preview}")
return text
except Exception as e:
logging.error(f"Error extracting text from PDF: {str(e)}")
return ""
def clean_json_string(text: str) -> str:
"""
Clean and extract JSON from the response text.
Handles both array and object responses, ensuring the output is in {"questions": [...]} format.
"""
try:
# First try to parse the text directly
parsed = json.loads(text)
# If it's an array, wrap it in a questions object
if isinstance(parsed, list):
return json.dumps({"questions": parsed})
# If it's an object with questions, return as is
if isinstance(parsed, dict) and "questions" in parsed:
return text
# If it's an object but missing questions array, wrap it
if isinstance(parsed, dict):
return json.dumps({"questions": [parsed]})
raise ValueError("Invalid JSON structure")
except json.JSONDecodeError:
# If direct parsing fails, try to clean and extract JSON
try:
# Remove any markdown code block syntax
text = re.sub(r'```json\s*|\s*```', '', text)
# Find JSON-like structure
json_match = re.search(r'(\{[\s\S]*\}|\[[\s\S]*\])', text)
if json_match:
potential_json = json_match.group(0)
# Clean up common issues
potential_json = re.sub(r',(\s*[\}\]])', r'\1', potential_json) # Remove trailing commas
potential_json = re.sub(r'\\n', ' ', potential_json) # Replace newlines
potential_json = re.sub(r'\\([^"])', r'\1', potential_json) # Remove invalid escapes
# Parse and validate the cleaned JSON
parsed = json.loads(potential_json)
# Handle different formats
if isinstance(parsed, list):
return json.dumps({"questions": parsed})
elif isinstance(parsed, dict) and "questions" in parsed:
return json.dumps(parsed)
elif isinstance(parsed, dict):
return json.dumps({"questions": [parsed]})
else:
raise ValueError("Invalid JSON structure")
except (json.JSONDecodeError, AttributeError):
pass
# If all cleaning attempts fail, raise an error
raise ValueError("Could not extract valid JSON from response")
def process_text(text: str, exam_type: str, structure: str, source_file: str) -> (List[Dict[str, Any]], float):
"""
Process the entire text by extracting and formatting existing questions.
"""
# Create a container for this chunk's processing
with st.expander(f"π Processing Text Chunk", expanded=True):
col1, col2 = st.columns([3, 1])
with col1:
status = st.empty()
status.info("π€ Sending request to AI...")
with col2:
progress = st.progress(0)
prompt = f"""You are a question extractor. Your task is to extract and format EVERY SINGLE question from the provided text into a complete JSON array.
ABSOLUTELY CRITICAL:
1. You MUST write out EVERY SINGLE question in full - no exceptions
2. DO NOT use any comments like "Additional questions would follow"
3. DO NOT add any notes or explanations outside the JSON
4. DO NOT use any placeholders or summaries
5. DO NOT mention "subset of questions" or similar
6. If there are 50 questions in the text, your JSON must contain exactly 50 complete question objects
7. If you hit a length limit, stop at the last complete question you can include
8. The response should be PURE JSON - nothing else
9. SKIP ANY QUESTIONS that refer to images, diagrams, graphs, figures, or visual elements
10. If a question mentions "look at the image", "in the picture", "as shown in", etc., DO NOT include it
11. For each question, include the specific source text that the question is based on
Text to process:
{text}
Domain Structure:
{structure}
Format EVERY question using this exact JSON structure:
{{
"exam_type": "{exam_type}",
"content_type": "Generated",
"exam_section": "{exam_type.lower()}",
"domain": "domain_from_structure",
"subdomain": "subdomain_from_structure",
"topic": "topic_from_structure",
"difficulty_level": "one_of[Easy,Medium,Hard,Very Hard]",
"reading_passage": "exact_passage_from_text",
"reading_passage_title": "title_from_text_or_generate_appropriate_title",
"question_text": "exact_question_from_text",
"option_a": "exact_option_a_from_text",
"option_b": "exact_option_b_from_text",
"option_c": "exact_option_c_from_text",
"option_d": "exact_option_d_from_text",
"correct_answer": "one_of[A,B,C,D]_determined_from_context",
"explanation": "explanation_from_text_or_generate_based_on_answer",
"source_text": "exact_text_snippet_that_this_question_is_based_on",
"is_active": true
}}"""
try:
logging.info("Sending request to OpenAI...")
progress.progress(25)
status.info("π€ Generating questions...")
response = client.chat.completions.create(
model="o3-mini",
messages=[
{"role": "user", "content": prompt}
],
response_format={"type": "json_object"} # Request JSON response format
)
content = response.choices[0].message.content.strip()
logging.info(f"Received response of length: {len(content)} characters")
progress.progress(50)
status.info("β¨ Processing AI response...")
# Log the first 200 characters of the response for debugging
logging.info(f"Response preview: {content[:200]}...")
# Clean and validate JSON
try:
logging.info("Attempting to clean and parse JSON...")
content = clean_json_string(content)
parsed_data = json.loads(content)
progress.progress(75)
if not isinstance(parsed_data, dict) or 'questions' not in parsed_data:
error_msg = "Response missing 'questions' array"
logging.error(error_msg)
status.error(error_msg)
raise ValueError(error_msg)
questions = parsed_data['questions']
if not isinstance(questions, list):
error_msg = "'questions' is not an array"
logging.error(error_msg)
status.error(error_msg)
raise ValueError(error_msg)
logging.info(f"Found {len(questions)} questions in response")
status.success(f"π Found {len(questions)} questions")
# Validate questions
valid_questions = []
invalid_count = 0
# Create a validation progress bar
validation_progress = st.progress(0)
validation_status = st.empty()
validation_status.info("π Validating questions...")
# Default values for missing fields
default_values = {
"exam_type": exam_type,
"content_type": "Generated",
"exam_section": exam_type.lower(),
"domain": "General",
"subdomain": "General",
"topic": "General",
"difficulty_level": "Medium",
"reading_passage_title": None,
"is_active": True,
"source_file": source_file,
"source_text": text # Add default source text
}
for q_idx, q in enumerate(questions, 1):
# Add default values for missing fields
for field, default_value in default_values.items():
if field not in q or q[field] is None:
q[field] = default_value
validation_errors = []
# Required fields that must have non-empty values
critical_fields = [
"question_text",
"option_a",
"option_b",
"option_c",
"option_d",
"correct_answer",
"explanation",
"source_text" # Add source_text as a critical field
]
# Validate critical fields
missing_fields = [f for f in critical_fields if not q.get(f)]
if missing_fields:
validation_errors.append(f"Missing critical fields: {missing_fields}")
# Validate field lengths
if len(q.get("question_text", "")) < 20:
validation_errors.append("Question text too short (min 20 chars)")
# Check if this is a math question
is_math = any(math_term in q.get('domain', '').lower() for math_term in ['math', 'algebra', 'geometry', 'calculus', 'arithmetic'])
# Validate correct answer format - only for non-math questions
if not is_math and q.get("correct_answer") not in ["A", "B", "C", "D"]:
validation_errors.append("Invalid correct_answer format (must be A, B, C, or D)")
# For math questions, just ensure there is a correct answer
if is_math and not q.get("correct_answer"):
validation_errors.append("Missing correct answer")
# Validate difficulty level
if q.get("difficulty_level") not in DIFFICULTY_LEVELS:
q["difficulty_level"] = "Medium" # Set default if invalid
if validation_errors:
invalid_count += 1
error_msg = f"Question {q_idx} validation failed: {', '.join(validation_errors)}"
logging.warning(error_msg)
with st.expander(f"β οΈ Question {q_idx} Validation Issues", expanded=False):
st.warning(error_msg)
else:
valid_questions.append(q)
logging.info(f"Question {q_idx} passed validation")
# Update validation progress
validation_progress.progress(q_idx / len(questions))
validation_status.info(f"π Validating questions... ({q_idx}/{len(questions)})")
progress.progress(100)
if not valid_questions:
error_msg = f"No valid questions were generated. {invalid_count} questions failed validation."
logging.error(error_msg)
status.error(error_msg)
return [], 0.0
validation_status.success(f"β
Successfully validated {len(valid_questions)} questions out of {len(questions)}")
# Calculate and log cost
input_tokens = len(prompt) / 4 # Rough estimate: 4 chars per token
output_tokens = len(content) / 4
# o3-mini pricing:
# Input: $1.10 per 1M tokens
# Output: $4.40 per 1M tokens
text_cost = (input_tokens / 1_000_000 * 1.10) + (output_tokens / 1_000_000 * 4.40)
logging.info(f"Estimated cost for this chunk: ${text_cost:.6f}")
st.success(f"β¨ Generated {len(valid_questions)} valid questions (Cost: ${text_cost:.6f})")
return valid_questions, text_cost
except (json.JSONDecodeError, ValueError) as e:
error_msg = f"JSON parsing error: {str(e)}"
logging.error(f"{error_msg}\nResponse content: {content}")
status.error(error_msg)
# Log the problematic content for debugging
with st.expander("Show problematic response"):
st.code(content)
return [], 0.0
except Exception as e:
error_msg = f"Error processing text: {str(e)}"
logging.error(error_msg)
status.error(error_msg)
return [], 0.0
def process_chunk(chunk: str, exam_type: str, idx: int, structure: str) -> (List[Dict[str, Any]], float):
"""
Process a single text chunk by first cleaning the text and then generating exam questions in a single LLM call.
This reduces the cost by combining cleaning and generation into one request.
Returns a tuple (valid_questions, chunk_cost).
"""
# Combined prompt that instructs the model to do two tasks: clean the text and then generate multiple exam questions.
combined_prompt = f"""
You are an expert text cleaner and exam question generator. First, clean and format the following text (fixing OCR issues and spacing) while preserving its exact meaning.
Then, based on the cleaned text, generate ALL possible exam questions. Extract every testable concept and create a comprehensive set of questions. Do not limit the number of questions - generate a question for every distinct piece of information or concept in the text.
Exam Question JSON Structure:
{{
"exam_type": "{exam_type}",
"content_type": "Generated",
"exam_section": "{exam_type.lower()}",
"domain": "domain_from_structure",
"subdomain": "subdomain_from_structure",
"topic": "topic_from_structure",
"difficulty_level": "one_of[Easy,Medium,Hard,Very Hard]",
"reading_passage": "complete_passage_text",
"reading_passage_title": "title_or_null",
"question_text": "question_text",
"option_a": "first_option",
"option_b": "second_option",
"option_c": "third_option",
"option_d": "fourth_option",
"correct_answer": "one_of[A,B,C,D]",
"explanation": "detailed_explanation",
"is_active": true
}}
Domain Structure:
{structure}
Text to process:
{chunk}
Return ONLY a valid JSON object with an array of questions under the key "questions" and no additional explanation.
Please provide the response in valid JSON format.
"""
try:
response = client.chat.completions.create(
model="o3-mini",
messages=[
{"role": "user", "content": combined_prompt},
],
response_format={"type": "json_object"} # Request JSON response format
)
content = response.choices[0].message.content.strip()
# Estimate tokens (rough conversion: assume 1 token ~ 4 characters)
input_tokens = len(combined_prompt) / 4
output_tokens = len(content) / 4
# o3-mini pricing:
# Input: $1.10 per 1M tokens
# Output: $4.40 per 1M tokens
chunk_cost = (input_tokens / 1_000_000 * 1.10) + (output_tokens / 1_000_000 * 4.40)
try:
# Parse JSON response
parsed_data = json.loads(content)
questions = parsed_data.get("questions", [])
# Validate each question with the same checks.
required_fields = [
"exam_type", "content_type", "exam_section", "domain", "subdomain",
"topic", "difficulty_level", "reading_passage", "question_text",
"option_a", "option_b", "option_c", "option_d", "correct_answer",
"explanation", "is_active"
]
valid_questions = []
for q in questions:
missing_fields = [f for f in required_fields if f not in q or not q[f]]
if missing_fields:
logging.warning(f"Question missing required fields: {missing_fields}")
continue
if len(q["reading_passage"]) < 100:
logging.warning("Reading passage too short")
continue
if len(q["question_text"]) < 20:
logging.warning("Question text too short")
continue
if len(q["explanation"]) < 50:
logging.warning("Explanation too short")
continue
if q["correct_answer"] not in ["A", "B", "C", "D"]:
logging.warning("Invalid correct_answer format")
continue
valid_questions.append(q)
if len(valid_questions) < 3:
logging.warning(f"Generated only {len(valid_questions)} valid questions, expected at least 3")
return [], chunk_cost
return valid_questions, chunk_cost
except json.JSONDecodeError as je:
logging.error(f"JSON parsing error in chunk {idx + 1}: {str(je)}")
return [], chunk_cost
except Exception as e:
logging.error(f"Error processing response: {str(e)}")
return [], chunk_cost
except Exception as e:
logging.error(f"Error processing chunk {idx + 1}: {str(e)}")
safe_st_error(f"Error generating questions for chunk {idx + 1}: {str(e)}")
return [], 0.0
def generate_questions(text_chunks: List[str], exam_type: str) -> (List[Dict[str, Any]], float):
"""
Generates questions for each text chunk using concurrent processing.
Returns a tuple (questions, total_cost) where total_cost is the estimated GPT cost.
"""
all_questions = []
total_cost = 0.0
structure = domain_structures.get(exam_type, "")
# Create progress tracking elements in the main thread
progress_placeholder = st.empty()
status_placeholder = st.empty()
metrics_placeholder = st.empty()
# Process chunks concurrently
with ThreadPoolExecutor() as executor:
futures = [
executor.submit(process_chunk, chunk, exam_type, idx, structure)
for idx, chunk in enumerate(text_chunks)
]
completed = 0
total = len(text_chunks)
total_questions = 0
# Process results as they complete
for future in as_completed(futures):
try:
chunk_questions, chunk_cost = future.result()
all_questions.extend(chunk_questions)
total_cost += chunk_cost
total_questions += len(chunk_questions)
# Update progress in the main thread
completed += 1
progress = completed / total
# Update UI elements
progress_placeholder.progress(progress)
status_placeholder.text(f"Processing chunks: {completed}/{total}")
metrics_placeholder.metric(
label="Progress",
value=f"{completed}/{total} chunks",
delta=f"{total_questions} questions generated"
)
# Process any queued messages
while not log_queue.empty():
msg_type, message = log_queue.get()
if msg_type == "warning":
st.warning(message)
elif msg_type == "error":
st.error(message)
except Exception as e:
st.error(f"Error processing chunk: {str(e)}")
# Show final summary
st.success(f"β
Processing complete! Generated {total_questions} questions from {total} chunks. (Estimated cost: ${total_cost:.6f})")
# Clear progress tracking elements
progress_placeholder.empty()
status_placeholder.empty()
metrics_placeholder.empty()
return all_questions, total_cost
def upload_questions_to_supabase(generated_questions: List[Dict[str, Any]], source_file: str):
"""
Uploads generated questions to Supabase.
Args:
generated_questions: List of question dictionaries.
source_file: Name of the source PDF file.
"""
# Create a container for upload progress
with st.expander("π€ Uploading Questions", expanded=True):
st.markdown("### Upload Progress")
# Create metrics for upload stats
col1, col2, col3 = st.columns(3)
with col1:
total_metric = st.metric("Total Questions", len(generated_questions))
with col2:
success_metric = st.metric("Uploaded", "0")
with col3:
failed_metric = st.metric("Failed", "0")
# Progress bar and status
progress = st.progress(0)
status = st.empty()
total = len(generated_questions)
successful_uploads = 0
failed_uploads = 0
for idx, question in enumerate(generated_questions):
status.info(f"π€ Uploading question {idx+1}/{total}")
# Generate a new valid UUID regardless of what was provided
new_uuid = str(uuid.uuid4())
# Set default values if not present and match the table schema
question_fields = {
"id": new_uuid,
"exam_type": question.get("exam_type", "Unknown"),
"content_type": question.get("content_type", "Generated"),
"exam_section": question.get("exam_section") or question.get("exam_type", "Unknown").lower(),
"domain": question.get("domain", "General"),
"subdomain": question.get("subdomain", "General"),
"topic": question.get("topic", "General"),
"difficulty_level": question.get("difficulty_level"),
"reading_passage": question.get("reading_passage"),
"question_text": question.get("question_text", "Not Available"),
"option_a": question.get("option_a"),
"option_b": question.get("option_b"),
"option_c": question.get("option_c"),
"option_d": question.get("option_d"),
"correct_answer": question.get("correct_answer", "Not Available"),
"explanation": question.get("explanation"),
"source_file": source_file,
"is_active": question.get("is_active", True),
"is_fixed": False,
"metadata": json.dumps(question.get("metadata")) if question.get("metadata") else None,
"source_text": question.get("source_text")
}
try:
# Insert the question and get the response
response = supabase.table("exam_contents").insert(question_fields).execute()
# Check if the response data indicates success
if response.data:
successful_uploads += 1
success_metric.metric("Uploaded", str(successful_uploads), delta=1)
else:
failed_uploads += 1
failed_metric.metric("Failed", str(failed_uploads), delta=1)
with st.expander(f"β οΈ Upload Issue - Question {idx+1}", expanded=False):
st.warning(f"Failed to insert question: {response.error}")
except Exception as e:
failed_uploads += 1
failed_metric.metric("Failed", str(failed_uploads), delta=1)
with st.expander(f"β Upload Error - Question {idx+1}", expanded=False):
st.error(f"Error uploading question: {str(e)}")
# Update progress
progress.progress((idx + 1) / total)
# Show final upload summary
if failed_uploads == 0:
status.success(f"β
Upload complete! Successfully uploaded all {successful_uploads} questions.")
else:
status.warning(f"β οΈ Upload complete with some issues. Successful: {successful_uploads}, Failed: {failed_uploads}")
def split_text_into_chunks(text: str, max_chunk_size: int = 20000) -> List[str]:
# Ensure that text is a string before processing.
if not isinstance(text, str):
try:
text = text.decode("utf-8")
except Exception:
text = str(text)
# Remove any leading/trailing whitespace.
text = text.strip()
total_length = len(text)
# Split the text into fixed-size chunks using slicing.
chunks = [text[i:i+max_chunk_size] for i in range(0, total_length, max_chunk_size)]
logging.info(f"Split text into {len(chunks)} chunks of up to {max_chunk_size} characters each.")
return chunks
def check_duplicate_pdf(pdf_file) -> bool:
"""
Check if a PDF file has already been processed by comparing its name with existing source files.
Returns True if the file is a duplicate, False otherwise.
"""
try:
existing_files = get_unique_source_files()
return pdf_file.name in existing_files
except Exception as e:
logging.error(f"Error checking for duplicate PDF: {str(e)}")
return False
def process_pdfs(pdf_files, exam_type):
"""
Process multiple PDF files and generate questions.
"""
# Create a container for logs
log_container = st.container()
with log_container:
st.subheader("Processing Logs")
log_output = st.empty()
all_questions = []
overall_cost = 0.0
progress_text = st.empty()
progress_bar = st.progress(0)
structure = domain_structures.get(exam_type, "")
# Check for duplicates before processing
duplicate_files = []
for pdf_file in pdf_files:
if check_duplicate_pdf(pdf_file):
duplicate_files.append(pdf_file.name)
if duplicate_files:
st.warning(f"The following files have already been processed:\n" +
"\n".join(f"- {file}" for file in duplicate_files))
# Filter out duplicate files
pdf_files = [f for f in pdf_files if f.name not in duplicate_files]
if not pdf_files:
st.error("No new files to process. Please upload different PDF files.")
return None, None
for i, pdf_file in enumerate(pdf_files):
file_msg = f"Processing file {i+1}/{len(pdf_files)}: {pdf_file.name}"
progress_text.text(file_msg)
logging.info(file_msg)
try:
# Read the file content directly from the UploadedFile object
pdf_content = pdf_file.getvalue()
pdf_file_obj = BytesIO(pdf_content)
# Extract text
full_text = extract_text_from_pdf(pdf_file_obj)
if not full_text:
warning_msg = f"No text extracted from {pdf_file.name}"
logging.warning(warning_msg)
st.warning(warning_msg)
continue
# Log the size of extracted text
logging.info(f"Extracted {len(full_text)} characters from {pdf_file.name}")
try:
# Split text into smaller chunks based on question sets
chunks = split_text_into_chunks(full_text)
chunk_msg = f"Split {pdf_file.name} into {len(chunks)} chunks"
logging.info(chunk_msg)
st.info(chunk_msg)
# Log more details about chunks
for idx, chunk in enumerate(chunks):
logging.info(f"Chunk {idx+1} contains {chunk.count('Question')} potential questions")
logging.info(f"Chunk {idx+1} size: {len(chunk)} characters")
chunk_progress = st.progress(0)
chunk_status = st.empty()
# Process each chunk
for chunk_idx, chunk in enumerate(chunks):
chunk_msg = f"Processing chunk {chunk_idx + 1}/{len(chunks)} of {pdf_file.name}"
chunk_status.text(chunk_msg)
logging.info(chunk_msg)
# Process the chunk
chunk_questions, chunk_cost = process_text(chunk, exam_type, structure, pdf_file.name)
overall_cost += chunk_cost
if chunk_questions:
all_questions.extend(chunk_questions)
success_msg = f"Generated {len(chunk_questions)} questions from chunk {chunk_idx + 1}"
logging.info(success_msg)
st.success(success_msg)
# Upload chunk questions
upload_msg = f"Uploading {len(chunk_questions)} questions to database..."
logging.info(upload_msg)
st.text(upload_msg)
upload_questions_to_supabase(chunk_questions, pdf_file.name)
else:
warning_msg = f"No valid questions generated from chunk {chunk_idx + 1}"
logging.warning(warning_msg)
st.warning(warning_msg)
chunk_progress.progress((chunk_idx + 1) / len(chunks))
# Update log display
log_output.text_area("Processing Logs", value=log_handler.get_logs(), height=200)
except Exception as e:
error_msg = f"Error processing {pdf_file.name}: {str(e)}"
logging.error(error_msg)
st.error(error_msg)
except Exception as e:
st.error(f"Error processing file {pdf_file.name}: {str(e)}")
# Update overall progress
progress_bar.progress((i + 1) / len(pdf_files))
# Final summary
if all_questions:
success_msg = f"Successfully generated {len(all_questions)} questions total. Total cost: ${overall_cost:.6f}"
logging.info(success_msg)
st.success(success_msg)
# Create the JSON output
questions_json = json.dumps(all_questions, indent=4)
return questions_json, questions_json.encode('utf-8')
else:
warning_msg = "No questions were generated from any of the files."
logging.warning(warning_msg)
st.warning(warning_msg)
return None, None
def get_questions(filters=None):
"""Fetch questions from Supabase with optional filters."""
try:
# Initialize an empty list to store all questions
all_questions = []
page_size = 1000 # Supabase default page size
current_start = 0
while True:
# Build the query with pagination
query = supabase.table("exam_contents").select("*").range(current_start, current_start + page_size - 1)
# Apply filters if any
if filters:
for key, value in filters.items():
if value and value != "All":
query = query.eq(key, value)
# Execute query
response = query.execute()
# If no data returned, break the loop
if not response.data:
break
# Add the current page's data to our results
all_questions.extend(response.data)
# If we got less than a full page, we're done
if len(response.data) < page_size:
break
# Move to next page
current_start += page_size
logging.info(f"Retrieved total of {len(all_questions)} questions from database")
return all_questions
except Exception as e:
logging.error(f"Error fetching questions: {e}")
st.error(f"Database error: {str(e)}")
return []
def get_analytics_data(questions):
"""Generate analytics data from questions."""
df = pd.DataFrame(questions)
analytics = {
'total_questions': len(df),
'active_questions': len([q for q in questions if q.get('is_active', True)]),
'inactive_questions': len([q for q in questions if not q.get('is_active', True)]),
'unfixed_questions': len([q for q in questions if not q.get('is_fixed', False)])
}
# Basic statistics
if 'exam_type' in df.columns:
analytics['questions_by_exam'] = df['exam_type'].value_counts()
else:
analytics['questions_by_exam'] = pd.Series(dtype='int64')
if 'difficulty_level' in df.columns:
analytics['questions_by_difficulty'] = df['difficulty_level'].value_counts()
else:
analytics['questions_by_difficulty'] = pd.Series(dtype='int64')
if 'domain' in df.columns:
analytics['questions_by_domain'] = df['domain'].value_counts()
else:
analytics['questions_by_domain'] = pd.Series(dtype='int64')
# Include exam_type in the domain/subdomain grouping
if all(col in df.columns for col in ['exam_type', 'domain', 'subdomain']):
analytics['questions_by_subdomain'] = df.groupby(['exam_type', 'domain', 'subdomain']).size().reset_index(name='count')
else:
analytics['questions_by_subdomain'] = pd.DataFrame(columns=['exam_type', 'domain', 'subdomain', 'count'])
# Time-based analytics
if 'created_at' in df.columns:
df['created_at'] = pd.to_datetime(df['created_at'])
analytics['questions_by_date'] = df.resample('D', on='created_at').size()
analytics['questions_by_month'] = df.resample('M', on='created_at').size()
analytics['recent_activity'] = df.sort_values('created_at', ascending=False).head(10)
# Content coverage analysis
if 'reading_passage' in df.columns:
analytics['has_passage'] = df['reading_passage'].notna().sum()
analytics['passage_ratio'] = (df['reading_passage'].notna().sum() / len(df)) * 100 if len(df) > 0 else 0
# Calculate average passage length
df['passage_length'] = df['reading_passage'].str.len().fillna(0)
analytics['avg_passage_length'] = df['passage_length'].mean()
analytics['passage_length_dist'] = df['passage_length'].describe()
# Question quality metrics
if 'explanation' in df.columns:
analytics['has_explanation'] = df['explanation'].notna().sum()
analytics['explanation_ratio'] = (df['explanation'].notna().sum() / len(df)) * 100 if len(df) > 0 else 0
# Calculate explanation comprehensiveness
df['explanation_length'] = df['explanation'].str.len().fillna(0)
analytics['avg_explanation_length'] = df['explanation_length'].mean()
analytics['explanation_length_dist'] = df['explanation_length'].describe()
# Options analysis
option_cols = ['option_a', 'option_b', 'option_c', 'option_d']
if all(col in df.columns for col in option_cols):
df['options_count'] = df[option_cols].notna().sum(axis=1)
analytics['complete_options'] = (df['options_count'] == 4).sum()
analytics['options_ratio'] = (analytics['complete_options'] / len(df)) * 100 if len(df) > 0 else 0
# Domain coverage analysis
if 'domain' in df.columns:
domain_coverage = df.groupby(['domain'])['subdomain'].nunique().reset_index()
domain_coverage.columns = ['domain', 'unique_subdomains']
analytics['domain_coverage'] = domain_coverage
# Calculate domain balance score (0-100) per exam type
domain_balance_scores = []
for exam_type in df['exam_type'].unique():
exam_domain_counts = df[df['exam_type'] == exam_type]['domain'].value_counts()
if not exam_domain_counts.empty:
max_count = exam_domain_counts.max()
min_count = exam_domain_counts.min()
score = ((1 - (max_count - min_count) / max_count) * 100) if max_count > 0 else 100
domain_balance_scores.append({'exam_type': exam_type, 'balance_score': score})
analytics['domain_balance_by_exam'] = pd.DataFrame(domain_balance_scores)
analytics['domain_balance_score'] = analytics['domain_balance_by_exam']['balance_score'].mean()
return analytics
def rewrite_question(question: Dict[str, Any], prompt: str = "") -> Dict[str, Any]:
"""
Use LLM to rewrite the question, passage, and options while maintaining the same concept.
"""
base_prompt = """Rewrite the following exam question with a new passage and options. Keep the same concept, difficulty level, and correct answer position, but create fresh content."""
# Add custom prompt if provided
if prompt:
base_prompt += f"\n\nSpecial Instructions: {prompt}"
prompt = f"""{base_prompt}
Current Question:
Reading Passage: {question.get('reading_passage', '')}
Question: {question.get('question_text', '')}
Options:
A) {question.get('option_a', '')}
B) {question.get('option_b', '')}
C) {question.get('option_c', '')}
D) {question.get('option_d', '')}
Correct Answer: {question.get('correct_answer', '')}
Explanation: {question.get('explanation', '')}
IMPORTANT LENGTH REQUIREMENTS:
- Reading passage must be AT LEAST 100 characters (preferably 200-300)
- Question text must be AT LEAST 50 characters
- Options can be concise but clear (no minimum length)
- Explanation must be AT LEAST 50 characters
Requirements:
1. Create a new reading passage that:
- Must be AT LEAST 100 characters (preferably 200-300)
- Covers the same concepts in detail
- Maintains similar complexity
- Uses rich context and examples
{"- Incorporates the special instructions provided above" if prompt else ""}
2. Write a detailed question that:
- Must be AT LEAST 50 characters
- Clearly states what is being asked
- Includes necessary context
3. Create clear options that:
- Are concise but clear
- Are distinct from each other
- Follow a similar format
- Maintain the correct answer in the same position
4. Write a good explanation that:
- Must be AT LEAST 50 characters
- Explains the correct answer
- Provides clear reasoning
- References the passage when relevant
Return ONLY a JSON object with the following structure:
{{
"reading_passage": "new_passage (MINIMUM 100 characters)",
"question_text": "new_question (MINIMUM 50 characters)",
"option_a": "new_option_a (concise)",
"option_b": "new_option_b (concise)",
"option_c": "new_option_c (concise)",
"option_d": "new_option_d (concise)",
"explanation": "new_explanation (MINIMUM 50 characters)"
}}"""
try:
response = client.chat.completions.create(
model="o3-mini",
messages=[
{
"role": "system",
"content": "You are an expert at rewriting exam questions. Create a detailed reading passage (100+ chars) and clear question (50+ chars). Options should be concise but clear. Explanation should be thorough (50+ chars)."
},
{"role": "user", "content": prompt}
],
temperature=0.7,
response_format={"type": "json_object"} # Request JSON response format
)
# Parse the response
new_content = json.loads(response.choices[0].message.content)
# Validate minimum length requirements with detailed error messages
length_requirements = {
'reading_passage': 100,
'question_text': 50,
'explanation': 50
}
errors = []
for key, min_length in length_requirements.items():
value = new_content.get(key, '')
current_length = len(value)
if current_length < min_length:
errors.append(f"{key} is too short: {current_length} chars (minimum {min_length} required)")
if errors:
error_message = "\n".join(errors)
raise ValueError(f"Content length requirements not met:\n{error_message}")
# Update the question with new content while preserving other fields
updated_question = question.copy()
updated_question.update(new_content)
# Calculate and log cost
input_tokens = (len(system_message) + len(prompt)) / 4 # Rough estimate: 4 chars per token
output_tokens = len(content) / 4
# o3-mini pricing:
# Input: $1.10 per 1M tokens
# Output: $4.40 per 1M tokens
rewrite_cost = (input_tokens / 1_000_000 * 1.10) + (output_tokens / 1_000_000 * 4.40)
logging.info(f"Estimated cost for rewriting this question: ${rewrite_cost:.6f}")
return updated_question
except json.JSONDecodeError as je:
error_msg = f"Invalid JSON response from LLM: {str(je)}"
logging.error(error_msg)
raise ValueError(error_msg)
except Exception as e:
logging.error(f"Error rewriting question: {str(e)}")
raise e
def display_question(question, index):
"""Display a single question with its details."""
with st.expander(f"Question {index + 1}", expanded=index == 0):
# Add delete and rewrite buttons in the top right corner
col1, col2, col3 = st.columns([5, 1, 1])
# Add prompt input field
prompt = st.text_area(
"Rewrite Instructions",
value="",
placeholder="Enter specific instructions for rewriting this question (e.g., 'include text about renewable energy' or 'make it about space exploration')",
key=f"prompt_{question['id']}"
)
with col2:
if st.button("π Rewrite", key=f"rewrite_{question['id']}", type="primary"):
try:
with st.spinner("Rewriting question..."):
# Rewrite the question with the prompt
updated_question = rewrite_question(question, prompt)
# Update in Supabase
supabase.table("exam_contents").update(updated_question).eq("id", question['id']).execute()
st.success("Question rewritten successfully!")
# Refresh the page
st.rerun()
except Exception as e:
st.error(f"Error rewriting question: {str(e)}")
with col3:
if st.button("ποΈ Delete", key=f"delete_{question['id']}", type="secondary"):
try:
# Delete from Supabase
supabase.table("exam_contents").delete().eq("id", question['id']).execute()
st.success("Question deleted successfully!")
# Add a rerun to refresh the page
st.rerun()
except Exception as e:
st.error(f"Error deleting question: {str(e)}")
# Metadata
with col1:
col_a, col_b, col_c, col_d, col_e = st.columns(5)
with col_a:
st.markdown(f"**Domain:** {question.get('domain', 'N/A')}")
with col_b:
st.markdown(f"**Subdomain:** {question.get('subdomain', 'N/A')}")
with col_c:
st.markdown(f"**Topic:** {question.get('topic', 'N/A')}")
with col_d:
st.markdown(f"**Difficulty:** {question.get('difficulty_level', 'N/A')}")
with col_e:
st.markdown(f"**Source:** {question.get('source_file', 'N/A')}")
# Source text if available
if question.get('source_text'):
st.markdown("### π Source Text")
st.markdown(
f"""<div style='background-color: #e8f4f9; padding: 20px; border-radius: 10px; margin: 10px 0; color: #1f1f1f;'>
{question['source_text']}
</div>""",
unsafe_allow_html=True
)
# Reading passage if available
if question.get('reading_passage'):
st.markdown("### π Reading Passage")
st.markdown(
f"""<div style='background-color: #f0f2f6; padding: 20px; border-radius: 10px; margin: 10px 0; color: #1f1f1f;'>
{question['reading_passage']}
</div>""",
unsafe_allow_html=True
)
# Question text and options
st.markdown("### β Question")
st.markdown(f"{question.get('question_text', '')}")
if any(question.get(f'option_{opt}') for opt in ['a', 'b', 'c', 'd']):
st.markdown("### Options")
options_container = st.container()
with options_container:
for opt in ['a', 'b', 'c', 'd']:
if question.get(f'option_{opt}'):
st.markdown(f"**{opt.upper()}.** {question[f'option_{opt}']}")
# Answer and explanation
st.markdown("### Answer & Explanation")
col1, col2 = st.columns(2)
with col1:
st.markdown(
f"""<div style='background-color: #e8f4ea; padding: 10px; border-radius: 5px; margin: 10px 0; color: #1f1f1f;'>
<strong>Correct Answer:</strong> {question.get('correct_answer', 'N/A')}
</div>""",
unsafe_allow_html=True
)
with col2:
if question.get('explanation'):
st.markdown(
f"""<div style='background-color: #fff3e0; padding: 10px; border-radius: 5px; color: #1f1f1f;'>
<strong>Explanation:</strong><br>{question['explanation']}
</div>""",
unsafe_allow_html=True
)
def display_analytics(analytics):
"""Display analytics visualizations."""
st.markdown("""
<h2 style='text-align: center; margin-bottom: 40px;'>π Analytics Dashboard</h2>
""", unsafe_allow_html=True)
# Key Metrics Overview
st.markdown("""
<div style='text-align: center; margin-bottom: 30px;'>
<h3 style='color: #0f4c81;'>Key Metrics</h3>
</div>
""", unsafe_allow_html=True)
metrics_container = st.container()
with metrics_container:
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.metric("π Total Questions", analytics['total_questions'])
with col2:
st.metric("β
Active Questions", analytics['active_questions'])
with col3:
st.metric("β Inactive Questions", analytics['inactive_questions'])
with col4:
num_domains = len(analytics['questions_by_domain']) if not analytics['questions_by_domain'].empty else 0
st.metric("π― Number of Domains", num_domains)
with col5:
if 'domain_balance_score' in analytics:
balance_score = f"{analytics['domain_balance_score']:.1f}%"
st.metric("βοΈ Domain Balance Score", balance_score)
# Content Quality Metrics
if any(key in analytics for key in ['has_explanation', 'complete_options', 'avg_passage_length']):
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Content Quality Metrics</h3>
</div>
""", unsafe_allow_html=True)
quality_cols = st.columns(3)
with quality_cols[0]:
if 'explanation_ratio' in analytics:
st.metric("π Questions with Explanations",
f"{analytics['explanation_ratio']:.1f}%",
help="Percentage of questions that have explanations")
with quality_cols[1]:
if 'options_ratio' in analytics:
st.metric("β
Complete Option Sets",
f"{analytics['options_ratio']:.1f}%",
help="Percentage of questions with all 4 options")
with quality_cols[2]:
if 'avg_passage_length' in analytics:
st.metric("π Avg Passage Length",
f"{int(analytics['avg_passage_length'])} chars",
help="Average length of reading passages")
# Time-based Analytics
if 'questions_by_date' in analytics and not analytics['questions_by_date'].empty:
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Question Generation Timeline</h3>
</div>
""", unsafe_allow_html=True)
# Daily question generation trend
fig_timeline = px.line(
x=analytics['questions_by_date'].index,
y=analytics['questions_by_date'].values,
title="Daily Question Generation",
labels={'x': 'Date', 'y': 'Number of Questions'}
)
fig_timeline.update_layout(showlegend=False)
st.plotly_chart(fig_timeline, use_container_width=True)
# Monthly aggregation
if 'questions_by_month' in analytics and not analytics['questions_by_month'].empty:
fig_monthly = px.bar(
x=analytics['questions_by_month'].index,
y=analytics['questions_by_month'].values,
title="Monthly Question Generation",
labels={'x': 'Month', 'y': 'Number of Questions'}
)
fig_monthly.update_layout(showlegend=False)
st.plotly_chart(fig_monthly, use_container_width=True)
# Questions by Exam Type
if not analytics['questions_by_exam'].empty:
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Distribution by Exam Type</h3>
</div>
""", unsafe_allow_html=True)
col1, col2, col3 = st.columns([1,3,1])
with col2:
fig = px.pie(
values=analytics['questions_by_exam'].values,
names=analytics['questions_by_exam'].index,
hole=0.4,
color_discrete_sequence=px.colors.qualitative.Set3
)
fig.update_layout(
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5),
margin=dict(t=60, b=40, l=40, r=40)
)
st.plotly_chart(fig, use_container_width=True)
# Questions by Difficulty
if not analytics['questions_by_difficulty'].empty:
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Distribution by Difficulty Level</h3>
</div>
""", unsafe_allow_html=True)
col1, col2, col3 = st.columns([1,3,1])
with col2:
fig = px.bar(
x=analytics['questions_by_difficulty'].index,
y=analytics['questions_by_difficulty'].values,
color=analytics['questions_by_difficulty'].index,
color_discrete_sequence=px.colors.qualitative.Set2
)
fig.update_layout(
showlegend=False,
xaxis_title="Difficulty Level",
yaxis_title="Number of Questions",
margin=dict(t=40, b=40, l=40, r=40)
)
st.plotly_chart(fig, use_container_width=True)
# Domain Coverage Analysis
if 'domain_coverage' in analytics and not analytics['domain_coverage'].empty:
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Domain Coverage Analysis</h3>
</div>
""", unsafe_allow_html=True)
# Domain coverage heatmap
fig_coverage = px.bar(
analytics['domain_coverage'],
x='domain',
y='unique_subdomains',
title="Number of Unique Subdomains per Domain",
color='unique_subdomains',
color_continuous_scale='Viridis'
)
fig_coverage.update_layout(
xaxis_title="Domain",
yaxis_title="Number of Unique Subdomains",
showlegend=False
)
st.plotly_chart(fig_coverage, use_container_width=True)
# Questions by Domain and Subdomain
if not analytics['questions_by_subdomain'].empty and len(analytics['questions_by_subdomain']) > 0:
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Distribution by Domain and Subdomain</h3>
</div>
""", unsafe_allow_html=True)
fig = px.treemap(
analytics['questions_by_subdomain'],
path=['exam_type', 'domain', 'subdomain'],
values='count',
color='count',
color_continuous_scale='Viridis'
)
fig.update_layout(margin=dict(t=30, b=30, l=30, r=30))
fig.update_traces(textinfo="label+value")
st.plotly_chart(fig, use_container_width=True)
# Recent Activity
if 'recent_activity' in analytics and not analytics['recent_activity'].empty:
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Recent Activity</h3>
</div>
""", unsafe_allow_html=True)
recent_df = analytics['recent_activity']
st.dataframe(
recent_df[['exam_type', 'domain', 'subdomain', 'difficulty_level', 'created_at']],
hide_index=True,
column_config={
'created_at': 'Timestamp',
'exam_type': 'Exam Type',
'domain': 'Domain',
'subdomain': 'Subdomain',
'difficulty_level': 'Difficulty'
}
)
# Add some spacing at the bottom
st.markdown("<br><br>", unsafe_allow_html=True)
def get_unique_domains():
"""Get unique domains from the database."""
domains = {
"SAT": ["Mathematics", "Reading and Writing"],
"IELTS": ["Reading", "Writing", "Speaking", "Listening"],
"TOEFL": ["Reading", "Listening", "Speaking", "Writing"]
}
return domains
def get_subdomains_for_domain(exam_type: str, domain: str) -> List[str]:
"""Get subdomains for a specific domain by parsing the domain structure."""
parsed_structure = parse_domain_structure(exam_type)
return list(parsed_structure.get(domain, {}).keys())
def parse_domain_structure(exam_type: str) -> dict:
"""Parse the domain structure string into a dictionary format."""
structure = domain_structures.get(exam_type, "")
if not structure:
return {}
result = {}
current_domain = None
current_subdomain = None
for line in structure.split('\n'):
line = line.strip()
if not line:
continue
# Match domain (e.g., "1. Reading and Writing:")
if line[0].isdigit() and line.endswith(':'):
current_domain = line.split('.', 1)[1].split(':', 1)[0].strip()
result[current_domain] = {}
# Match subdomain (e.g., "- Information and Ideas:")
elif line.startswith('-'):
current_subdomain = line[1:].split(':', 1)[0].strip()
result[current_domain][current_subdomain] = []
# Match topic (e.g., "* Central Ideas and Details")
elif line.startswith('*'):
if current_domain and current_subdomain:
topic = line[1:].strip()
result[current_domain][current_subdomain].append(topic)
return result
def get_topics_for_subdomain(exam_type: str, domain: str, subdomain: str) -> List[str]:
"""Get topics for a specific subdomain by parsing the domain structure."""
parsed_structure = parse_domain_structure(exam_type)
return parsed_structure.get(domain, {}).get(subdomain, [])
def get_unique_source_files():
"""Get unique source files from the database, with pagination to retrieve all records."""
try:
source_files = set()
page_size = 1000
current_start = 0
while True:
response = supabase.table("exam_contents").select("source_file").range(current_start, current_start + page_size - 1).execute()
if not response.data:
break
for item in response.data:
if item.get('source_file'):
source_files.add(item['source_file'])
if len(response.data) < page_size:
break
current_start += page_size
return sorted(list(source_files))
except Exception as e:
st.error(f"Error fetching source files: {str(e)}")
return []
# Streamlit Interface
st.title("π PDF to Exam Questions Generator with Supabase Upload")
# Create tabs for different functionalities
tab_upload, tab_view, tab_analytics = st.tabs(["π€ Upload & Generate", "π View Questions", "π Analytics"])
with tab_upload:
st.markdown(
"""
Upload PDF files containing exam material, select the exam type, and generate structured questions automatically.
The generated questions will be uploaded to your Supabase database.
**Supported Exam Types**: SAT, IELTS, TOEFL
"""
)
# File uploader and exam type selection
uploaded_files = st.file_uploader("π₯ Upload PDFs", type=["pdf"], accept_multiple_files=True)
exam_type = st.selectbox(
"π Select Exam Type",
options=["SAT", "IELTS", "TOEFL"],
index=0
)
# Generate and Upload Button
if st.button("π Generate and Upload Questions"):
if not uploaded_files:
st.error("Please upload at least one PDF file.")
else:
with st.spinner("Processing files..."):
questions_json, download_content = process_pdfs(uploaded_files, exam_type)
if questions_json:
st.success(f"Successfully processed {len(uploaded_files)} files and generated questions!")
st.json(json.loads(questions_json))
# Provide download button
st.download_button(
label="β¬οΈ Download Questions JSON",
data=download_content,
file_name=f"generated_questions_{uuid.uuid4()}.json",
mime="application/json"
)
with tab_view:
st.subheader("Question Browser")
# Initialize session state
if 'selected_domain' not in st.session_state:
st.session_state.selected_domain = "All"
if 'selected_subdomain' not in st.session_state:
st.session_state.selected_subdomain = "All"
if 'selected_topic' not in st.session_state:
st.session_state.selected_topic = "All"
# Filters
col1, col2, col3 = st.columns(3)
with col1:
view_exam_type = st.selectbox("Exam Type", ["All"] + EXAM_TYPES, key="view_exam_type")
# Get domains based on exam type
domains = ["All"]
if view_exam_type != "All":
domains.extend(get_unique_domains().get(view_exam_type, []))
domain = st.selectbox("Domain", domains, key="domain_select")
# Reset subdomain when domain changes
if domain != st.session_state.get('last_domain'):
st.session_state.selected_subdomain = "All"
st.session_state.last_domain = domain
st.session_state.selected_topic = "All"
with col2:
difficulty = st.selectbox("Difficulty Level", ["All"] + DIFFICULTY_LEVELS)
# Get subdomains based on selected exam type and domain
subdomains = ["All"]
if domain != "All" and view_exam_type != "All":
subdomains.extend(get_subdomains_for_domain(view_exam_type, domain))
subdomain = st.selectbox("Subdomain", subdomains, key="subdomain_select")
# Get topics based on selected exam type, domain, and subdomain
topics = ["All"]
if subdomain != "All" and domain != "All" and view_exam_type != "All":
topics.extend(get_topics_for_subdomain(view_exam_type, domain, subdomain))
topic = st.selectbox("Topic", topics, key="topic_select")
with col3:
# Add source file filter
source_files = ["All"] + get_unique_source_files()
source_file = st.selectbox("π Source Book/PDF", source_files, help="Filter questions by their source PDF file")
# Apply filters
filters = {
'exam_type': view_exam_type if view_exam_type != "All" else None,
'difficulty_level': difficulty if difficulty != "All" else None,
'domain': domain if domain != "All" else None,
'subdomain': subdomain if subdomain != "All" else None,
'topic': topic if topic != "All" else None,
'source_file': source_file if source_file != "All" else None
}
# Remove None values from filters
filters = {k: v for k, v in filters.items() if v is not None}
# Get filtered questions
questions = get_questions(filters)
if not questions:
st.info("No questions found matching the selected filters.")
else:
st.success(f"Found {len(questions)} questions")
# Add search functionality
search_query = st.text_input("π Search questions", placeholder="Enter keywords to search in questions, passages, or options...")
if search_query:
# Filter questions based on search query
filtered_questions = []
search_terms = search_query.lower().split()
for question in questions:
searchable_text = (
f"{question.get('question_text', '')} "
f"{question.get('reading_passage', '')} "
f"{question.get('option_a', '')} "
f"{question.get('option_b', '')} "
f"{question.get('option_c', '')} "
f"{question.get('option_d', '')}"
).lower()
# Check if all search terms are present in the searchable text
if all(term in searchable_text for term in search_terms):
filtered_questions.append(question)
questions = filtered_questions
if not questions:
st.warning(f"No questions found matching the search term: '{search_query}'")
else:
st.success(f"Found {len(questions)} questions matching your search")
# Pagination
questions_per_page = 10
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
total_pages = (len(questions) + questions_per_page - 1) // questions_per_page
# Calculate start and end indices for current page
start_idx = (st.session_state.current_page - 1) * questions_per_page
end_idx = min(start_idx + questions_per_page, len(questions))
# Display current page questions
for i, question in enumerate(questions[start_idx:end_idx], start=start_idx):
display_question(question, i)
# Pagination controls
col1, col2, col3 = st.columns([1, 2, 1])
with col1:
if st.session_state.current_page > 1:
if st.button("β Previous"):
st.session_state.current_page -= 1
st.rerun()
with col2:
st.write(f"Page {st.session_state.current_page} of {total_pages}")
with col3:
if st.session_state.current_page < total_pages:
if st.button("Next β"):
st.session_state.current_page += 1
st.rerun()
with tab_analytics:
# Get all questions for analytics
all_questions = get_questions()
analytics = get_analytics_data(all_questions)
# Add source file management section
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>π Source File Management</h3>
</div>
""", unsafe_allow_html=True)
# Get unique source files
source_files = get_unique_source_files()
if not source_files:
st.info("No source files found in the database.")
else:
# Create a container for the source files
with st.container():
# Display source files in a grid
cols = st.columns(3)
for idx, source_file in enumerate(source_files):
col = cols[idx % 3]
with col:
# Count questions for this source file
question_count = len([q for q in all_questions if q.get('source_file') == source_file])
# Create an expander for each source file
with st.expander(f"π {source_file}", expanded=False):
st.markdown(f"**Questions:** {question_count}")
# Add delete button with confirmation
if st.button(f"ποΈ Delete", key=f"delete_{source_file}"):
confirm_key = f"confirm_{source_file}"
if confirm_key not in st.session_state:
st.session_state[confirm_key] = False
if not st.session_state[confirm_key]:
st.warning(f"Are you sure you want to delete all questions from {source_file}?")
col1, col2 = st.columns(2)
with col1:
if st.button("β
Yes", key=f"yes_{source_file}"):
try:
# Delete all questions with this source file
response = supabase.table("exam_contents")\
.delete()\
.eq("source_file", source_file)\
.execute()
if response.data:
st.success(f"Successfully deleted all questions from {source_file}")
st.session_state[confirm_key] = True
# Rerun to refresh the page
st.rerun()
else:
st.error("Failed to delete questions")
except Exception as e:
st.error(f"Error deleting questions: {str(e)}")
with col2:
if st.button("β No", key=f"no_{source_file}"):
st.session_state[confirm_key] = True
st.rerun()
# Add spacing before analytics
st.markdown("<br><br>", unsafe_allow_html=True)
# Display analytics
display_analytics(analytics)
st.markdown(
"""
---
**Note**: This application uses OpenAI services to generate exam questions and uploads them to Supabase. Ensure that your API credentials are correctly set in the environment variables.
"""
) |