File size: 8,240 Bytes
51e2f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from typing import List, Tuple

import torch
import torch.nn as nn

from models.scnet_unofficial.utils import get_convtranspose_output_padding


class FusionLayer(nn.Module):
    """

    FusionLayer class implements a module for fusing two input tensors using convolutional operations.



    Args:

    - input_dim (int): Dimensionality of the input channels.

    - kernel_size (int, optional): Kernel size for the convolutional layer. Default is 3.

    - stride (int, optional): Stride value for the convolutional layer. Default is 1.

    - padding (int, optional): Padding value for the convolutional layer. Default is 1.



    Shapes:

    - Input: (B, F, T, C) and (B, F, T, C) where

        B is batch size,

        F is the number of features,

        T is sequence length,

        C is input dimensionality.

    - Output: (B, F, T, C) where

        B is batch size,

        F is the number of features,

        T is sequence length,

        C is input dimensionality.

    """

    def __init__(

        self, input_dim: int, kernel_size: int = 3, stride: int = 1, padding: int = 1

    ):
        """

        Initializes FusionLayer with input dimension, kernel size, stride, and padding.

        """
        super().__init__()
        self.conv = nn.Conv2d(
            input_dim * 2,
            input_dim * 2,
            kernel_size=(kernel_size, 1),
            stride=(stride, 1),
            padding=(padding, 0),
        )
        self.activation = nn.GLU()

    def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
        """

        Performs forward pass through the FusionLayer.



        Args:

        - x1 (torch.Tensor): First input tensor of shape (B, F, T, C).

        - x2 (torch.Tensor): Second input tensor of shape (B, F, T, C).



        Returns:

        - torch.Tensor: Output tensor of shape (B, F, T, C).

        """
        x = x1 + x2
        x = x.repeat(1, 1, 1, 2)
        x = self.conv(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
        x = self.activation(x)
        return x


class Upsample(nn.Module):
    """

    Upsample class implements a module for upsampling input tensors using transposed 2D convolution.



    Args:

    - input_dim (int): Dimensionality of the input channels.

    - output_dim (int): Dimensionality of the output channels.

    - stride (int): Stride value for the transposed convolution operation.

    - output_padding (int): Output padding value for the transposed convolution operation.



    Shapes:

    - Input: (B, C_in, F, T) where

        B is batch size,

        C_in is the number of input channels,

        F is the frequency dimension,

        T is the time dimension.

    - Output: (B, C_out, F * stride + output_padding, T) where

        B is batch size,

        C_out is the number of output channels,

        F * stride + output_padding is the upsampled frequency dimension.

    """

    def __init__(

        self, input_dim: int, output_dim: int, stride: int, output_padding: int

    ):
        """

        Initializes Upsample with input dimension, output dimension, stride, and output padding.

        """
        super().__init__()
        self.conv = nn.ConvTranspose2d(
            input_dim, output_dim, 1, (stride, 1), output_padding=(output_padding, 0)
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """

        Performs forward pass through the Upsample module.



        Args:

        - x (torch.Tensor): Input tensor of shape (B, C_in, F, T).



        Returns:

        - torch.Tensor: Output tensor of shape (B, C_out, F * stride + output_padding, T).

        """
        return self.conv(x)


class SULayer(nn.Module):
    """

    SULayer class implements a subband upsampling layer using transposed convolution.



    Args:

    - input_dim (int): Dimensionality of the input channels.

    - output_dim (int): Dimensionality of the output channels.

    - upsample_stride (int): Stride value for the upsampling operation.

    - subband_shape (int): Shape of the subband.

    - sd_interval (Tuple[int, int]): Start and end indices of the subband interval.



    Shapes:

    - Input: (B, F, T, C) where

        B is batch size,

        F is the number of features,

        T is sequence length,

        C is input dimensionality.

    - Output: (B, F, T, C) where

        B is batch size,

        F is the number of features,

        T is sequence length,

        C is input dimensionality.

    """

    def __init__(

        self,

        input_dim: int,

        output_dim: int,

        upsample_stride: int,

        subband_shape: int,

        sd_interval: Tuple[int, int],

    ):
        """

        Initializes SULayer with input dimension, output dimension, upsample stride, subband shape, and subband interval.

        """
        super().__init__()
        sd_shape = sd_interval[1] - sd_interval[0]
        upsample_output_padding = get_convtranspose_output_padding(
            input_shape=sd_shape, output_shape=subband_shape, stride=upsample_stride
        )
        self.upsample = Upsample(
            input_dim=input_dim,
            output_dim=output_dim,
            stride=upsample_stride,
            output_padding=upsample_output_padding,
        )
        self.sd_interval = sd_interval

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """

        Performs forward pass through the SULayer.



        Args:

        - x (torch.Tensor): Input tensor of shape (B, F, T, C).



        Returns:

        - torch.Tensor: Output tensor of shape (B, F, T, C).

        """
        x = x[:, self.sd_interval[0] : self.sd_interval[1]]
        x = x.permute(0, 3, 1, 2)
        x = self.upsample(x)
        x = x.permute(0, 2, 3, 1)
        return x


class SUBlock(nn.Module):
    """

    SUBlock class implements a block with fusion layer and subband upsampling layers.



    Args:

    - input_dim (int): Dimensionality of the input channels.

    - output_dim (int): Dimensionality of the output channels.

    - upsample_strides (List[int]): List of stride values for the upsampling operations.

    - subband_shapes (List[int]): List of shapes for the subbands.

    - sd_intervals (List[Tuple[int, int]]): List of intervals for subband decomposition.



    Shapes:

    - Input: (B, Fi-1, T, Ci-1) and (B, Fi-1, T, Ci-1) where

        B is batch size,

        Fi-1 is the number of input subbands,

        T is sequence length,

        Ci-1 is the number of input channels.

    - Output: (B, Fi, T, Ci) where

        B is batch size,

        Fi is the number of output subbands,

        T is sequence length,

        Ci is the number of output channels.

    """

    def __init__(

        self,

        input_dim: int,

        output_dim: int,

        upsample_strides: List[int],

        subband_shapes: List[int],

        sd_intervals: List[Tuple[int, int]],

    ):
        """

        Initializes SUBlock with input dimension, output dimension,

        upsample strides, subband shapes, and subband intervals.

        """
        super().__init__()
        self.fusion_layer = FusionLayer(input_dim=input_dim)
        self.su_layers = nn.ModuleList(
            SULayer(
                input_dim=input_dim,
                output_dim=output_dim,
                upsample_stride=uss,
                subband_shape=sbs,
                sd_interval=sdi,
            )
            for i, (uss, sbs, sdi) in enumerate(
                zip(upsample_strides, subband_shapes, sd_intervals)
            )
        )

    def forward(self, x: torch.Tensor, x_skip: torch.Tensor) -> torch.Tensor:
        """

        Performs forward pass through the SUBlock.



        Args:

        - x (torch.Tensor): Input tensor of shape (B, Fi-1, T, Ci-1).

        - x_skip (torch.Tensor): Input skip connection tensor of shape (B, Fi-1, T, Ci-1).



        Returns:

        - torch.Tensor: Output tensor of shape (B, Fi, T, Ci).

        """
        x = self.fusion_layer(x, x_skip)
        x = torch.concat([layer(x) for layer in self.su_layers], dim=1)
        return x