File size: 14,437 Bytes
51e2f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import deque
from .separation import SeparationNet
import typing as tp
import math

class Swish(nn.Module):
    def forward(self, x):
        return x * x.sigmoid()


class ConvolutionModule(nn.Module):
    """

    Convolution Module in SD block.

    

    Args:    

        channels (int): input/output channels.

        depth (int): number of layers in the residual branch. Each layer has its own

        compress (float): amount of channel compression.

        kernel (int): kernel size for the convolutions.

        """
    def __init__(self, channels, depth=2, compress=4, kernel=3):
        super().__init__()
        assert kernel % 2 == 1
        self.depth = abs(depth)
        hidden_size = int(channels / compress)
        norm = lambda d: nn.GroupNorm(1, d)
        self.layers = nn.ModuleList([])
        for _ in range(self.depth):
            padding = (kernel // 2)
            mods = [
                norm(channels),
                nn.Conv1d(channels, hidden_size*2, kernel, padding = padding),
                nn.GLU(1), 
                nn.Conv1d(hidden_size, hidden_size, kernel, padding = padding, groups = hidden_size),
                norm(hidden_size),
                Swish(),
                nn.Conv1d(hidden_size, channels, 1),
            ]
            layer = nn.Sequential(*mods)
            self.layers.append(layer)

    def forward(self, x):
        for layer in self.layers:
            x = x + layer(x)
        return x


class FusionLayer(nn.Module):
    """

    A FusionLayer within the decoder.



    Args:

    - channels (int): Number of input channels.

    - kernel_size (int, optional): Kernel size for the convolutional layer, defaults to 3.

    - stride (int, optional): Stride for the convolutional layer, defaults to 1.

    - padding (int, optional): Padding for the convolutional layer, defaults to 1.

    """

    def __init__(self, channels, kernel_size=3, stride=1, padding=1):
        super(FusionLayer, self).__init__()
        self.conv = nn.Conv2d(channels * 2, channels * 2, kernel_size, stride=stride, padding=padding)

    def forward(self, x, skip=None):
        if skip is not None:
            x += skip
        x = x.repeat(1, 2, 1, 1)
        x = self.conv(x)
        x = F.glu(x, dim=1)
        return x


class SDlayer(nn.Module):
    """

    Implements a Sparse Down-sample Layer for processing different frequency bands separately.



    Args:

    - channels_in (int): Input channel count.

    - channels_out (int): Output channel count.

    - band_configs (dict): A dictionary containing configuration for each frequency band.

                           Keys are 'low', 'mid', 'high' for each band, and values are

                           dictionaries with keys 'SR', 'stride', and 'kernel' for proportion,

                           stride, and kernel size, respectively.

    """
    def __init__(self, channels_in, channels_out, band_configs):
        super(SDlayer, self).__init__()

        # Initializing convolutional layers for each band
        self.convs = nn.ModuleList()
        self.strides = []
        self.kernels = []
        for config in band_configs.values():
            self.convs.append(nn.Conv2d(channels_in, channels_out, (config['kernel'], 1), (config['stride'], 1), (0, 0)))
            self.strides.append(config['stride'])
            self.kernels.append(config['kernel'])
        
        # Saving rate proportions for determining splits
        self.SR_low = band_configs['low']['SR']
        self.SR_mid = band_configs['mid']['SR']

    def forward(self, x):
        B, C, Fr, T = x.shape
        # Define splitting points based on sampling rates
        splits = [
            (0, math.ceil(Fr * self.SR_low)),
            (math.ceil(Fr * self.SR_low), math.ceil(Fr * (self.SR_low + self.SR_mid))), 
            (math.ceil(Fr * (self.SR_low + self.SR_mid)), Fr)
        ]

        # Processing each band with the corresponding convolution
        outputs = []
        original_lengths=[]
        for conv, stride, kernel, (start, end) in zip(self.convs, self.strides, self.kernels, splits):
            extracted = x[:, :, start:end, :]
            original_lengths.append(end-start)
            current_length = extracted.shape[2]

            # padding
            if stride == 1:
                total_padding = kernel - stride
            else:
                total_padding = (stride - current_length % stride) % stride
            pad_left = total_padding // 2
            pad_right = total_padding - pad_left

            padded = F.pad(extracted, (0, 0, pad_left, pad_right))

            output = conv(padded)
            outputs.append(output)

        return outputs, original_lengths


class SUlayer(nn.Module):
    """

    Implements a Sparse Up-sample Layer in decoder.



    Args:

    - channels_in: The number of input channels.

    - channels_out: The number of output channels.

    - convtr_configs: Dictionary containing the configurations for transposed convolutions.

    """
    def __init__(self, channels_in, channels_out, band_configs):
        super(SUlayer, self).__init__()

        # Initializing convolutional layers for each band
        self.convtrs = nn.ModuleList([
            nn.ConvTranspose2d(channels_in, channels_out, [config['kernel'], 1], [config['stride'], 1])
            for _, config in band_configs.items()
        ])

    def forward(self, x, lengths, origin_lengths):
        B, C, Fr, T = x.shape
        # Define splitting points based on input lengths
        splits = [
            (0, lengths[0]),
            (lengths[0], lengths[0] + lengths[1]),
            (lengths[0] + lengths[1], None)
        ]
        # Processing each band with the corresponding convolution
        outputs = []
        for idx, (convtr, (start, end)) in enumerate(zip(self.convtrs, splits)):
            out = convtr(x[:, :, start:end, :])
            # Calculate the distance to trim the output symmetrically to original length
            current_Fr_length = out.shape[2] 
            dist = abs(origin_lengths[idx] - current_Fr_length) // 2

            # Trim the output to the original length symmetrically
            trimmed_out = out[:, :, dist:dist + origin_lengths[idx], :]

            outputs.append(trimmed_out)

        # Concatenate trimmed outputs along the frequency dimension to return the final tensor
        x = torch.cat(outputs, dim=2)
 
        return x


class SDblock(nn.Module):
    """

    Implements a simplified Sparse Down-sample block in encoder.

    

    Args:

    - channels_in (int): Number of input channels.

    - channels_out (int): Number of output channels.

    - band_config (dict): Configuration for the SDlayer specifying band splits and convolutions.

    - conv_config (dict): Configuration for convolution modules applied to each band.

    - depths (list of int): List specifying the convolution depths for low, mid, and high frequency bands.

    """
    def __init__(self, channels_in, channels_out, band_configs={}, conv_config={}, depths=[3, 2, 1], kernel_size=3):
        super(SDblock, self).__init__()
        self.SDlayer = SDlayer(channels_in, channels_out, band_configs)
        
        # Dynamically create convolution modules for each band based on depths
        self.conv_modules = nn.ModuleList([
            ConvolutionModule(channels_out, depth, **conv_config) for depth in depths
        ])
        #Set the kernel_size to an odd number.
        self.globalconv = nn.Conv2d(channels_out, channels_out, kernel_size, 1, (kernel_size - 1) // 2)

    def forward(self, x):
        bands, original_lengths = self.SDlayer(x)
        # B, C, f, T = band.shape
        bands = [
            F.gelu(
                conv(band.permute(0, 2, 1, 3).reshape(-1, band.shape[1], band.shape[3]))
                .view(band.shape[0], band.shape[2], band.shape[1], band.shape[3])
                .permute(0, 2, 1, 3)
            )
            for conv, band in zip(self.conv_modules, bands)
            
        ]
        lengths = [band.size(-2) for band in bands]
        full_band = torch.cat(bands, dim=2)
        skip = full_band

        output = self.globalconv(full_band)

        return output, skip, lengths, original_lengths 


class SCNet(nn.Module):
    """

    The implementation of SCNet: Sparse Compression Network for Music Source Separation. Paper: https://arxiv.org/abs/2401.13276.pdf



    Args:

    - sources (List[str]): List of sources to be separated.

    - audio_channels (int): Number of audio channels.

    - nfft (int): Number of FFTs to determine the frequency dimension of the input.

    - hop_size (int): Hop size for the STFT.

    - win_size (int): Window size for STFT.

    - normalized (bool): Whether to normalize the STFT.

    - dims (List[int]): List of channel dimensions for each block.

    - band_configs (Dict[str, Dict[str, int]]): Configuration for each frequency band, including how to divide the frequency bands, 

      and the settings for the upsampling/downsampling convolutional layers.

    - conv_depths (List[int]): List specifying the number of convolution modules in each SD block.

    - compress (int): Compression factor for convolution module.

    - conv_kernel (int): Kernel size for convolution layer in convolution module.

    - num_dplayer (int): Number of dual-path layers.

    - expand (int): Expansion factor in the dual-path RNN, default is 1.



    """
    def __init__(self,

                 sources = ['drums', 'bass', 'other', 'vocals'],

                 audio_channels = 2,

                 # Main structure

                 dims = [4, 32, 64, 128], # dims = [4, 64, 128, 256] in SCNet-large

                 # STFT

                 nfft = 4096,

                 hop_size = 1024,

                 win_size = 4096,

                 normalized = True,

                 # SD/SU layer

                 band_configs = {

                    'low': { 'SR': .175, 'stride': 1, 'kernel': 3 },

                    'mid': { 'SR': .392, 'stride': 4, 'kernel': 4 },

                    'high': {'SR': .433, 'stride': 16, 'kernel': 16 }

                 },                      

                 # Convolution Module

                 conv_depths = [3,2,1], 

                 compress = 4, 

                 conv_kernel = 3,

                 # Dual-path RNN

                 num_dplayer = 6,

                 expand = 1,

                 # mamba

                 use_mamba = False,

                 mamba_config = {

                    'd_stat': 16,

                    'd_conv': 4,

                    'd_expand': 2                       

                 }):
        super().__init__()
        self.sources = sources
        self.audio_channels = audio_channels
        self.dims = dims
        self.band_configs = band_configs
        self.hop_length = hop_size
        self.conv_config = {
            'compress': compress,
            'kernel': conv_kernel,
        }
    
        self.stft_config = {
            'n_fft': nfft,
            'hop_length': hop_size,
            'win_length': win_size,
            'center': True,
            'normalized': normalized
        }

        self.encoder = nn.ModuleList()
        self.decoder = nn.ModuleList()
        
        for index in range(len(dims)-1):
            enc = SDblock(
                    channels_in = dims[index], 
                    channels_out = dims[index+1], 
                    band_configs = self.band_configs,
                    conv_config = self.conv_config,
                    depths = conv_depths
                    )
            self.encoder.append(enc)

            dec = nn.Sequential(
                FusionLayer(channels = dims[index+1]),
                SUlayer(
                    channels_in = dims[index+1],
                    channels_out = dims[index] if index != 0 else dims[index] * len(sources),
                    band_configs = self.band_configs,
                )
            )
            self.decoder.insert(0, dec)

        self.separation_net = SeparationNet(
            channels = dims[-1],
            expand = expand,
            num_layers = num_dplayer,
            use_mamba = use_mamba,
            **mamba_config
        )        

        
    def forward(self, x):
        # B, C, L = x.shape
        B = x.shape[0]
        # In the initial padding, ensure that the number of frames after the STFT (the length of the T dimension) is even,
        # so that the RFFT operation can be used in the separation network.
        padding = self.hop_length - x.shape[-1] % self.hop_length
        if (x.shape[-1] + padding) // self.hop_length % 2 == 0:
            padding += self.hop_length
        x = F.pad(x, (0, padding))
  
        # STFT
        L = x.shape[-1]
        x = x.reshape(-1, L)
        x = torch.stft(x, **self.stft_config, return_complex=True)
        x = torch.view_as_real(x)
        x = x.permute(0, 3, 1, 2).reshape(x.shape[0]//self.audio_channels, x.shape[3]*self.audio_channels, x.shape[1], x.shape[2])
    
        B, C, Fr, T = x.shape
    
        save_skip = deque()
        save_lengths = deque()
        save_original_lengths = deque()
        # encoder
        for sd_layer in self.encoder:
            x, skip, lengths, original_lengths = sd_layer(x)
            save_skip.append(skip)
            save_lengths.append(lengths)
            save_original_lengths.append(original_lengths)

        #separation
        x = self.separation_net(x)

        #decoder
        for fusion_layer, su_layer in self.decoder:
            x = fusion_layer(x, save_skip.pop())
            x = su_layer(x, save_lengths.pop(), save_original_lengths.pop())

        #output
        n = self.dims[0]
        x = x.view(B, n, -1, Fr, T)   
        x = x.reshape(-1, 2, Fr, T).permute(0, 2, 3, 1)
        x = torch.view_as_complex(x.contiguous())
        x = torch.istft(x, **self.stft_config)
        x = x.reshape(B, len(self.sources), self.audio_channels, -1)
    
        x = x[:, :, :, :-padding]
        
        return x