File size: 6,106 Bytes
51e2f90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import torch
import torch.nn as nn
from torch.nn.modules.rnn import LSTM
import torch.nn.functional as Func
try:
from mamba_ssm.modules.mamba_simple import Mamba
except Exception as e:
print('No mamba found. Please install mamba_ssm')
class RMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(dim))
def forward(self, x):
return Func.normalize(x, dim=-1) * self.scale * self.gamma
class MambaModule(nn.Module):
def __init__(self, d_model, d_state, d_conv, d_expand):
super().__init__()
self.norm = RMSNorm(dim=d_model)
self.mamba = Mamba(
d_model=d_model,
d_state=d_state,
d_conv=d_conv,
expand=d_expand
)
def forward(self, x):
x = x + self.mamba(self.norm(x))
return x
class FeatureConversion(nn.Module):
"""
Integrates into the adjacent Dual-Path layer.
Args:
channels (int): Number of input channels.
inverse (bool): If True, uses ifft; otherwise, uses rfft.
"""
def __init__(self, channels, inverse):
super().__init__()
self.inverse = inverse
self.channels= channels
def forward(self, x):
# B, C, F, T = x.shape
if self.inverse:
x = x.float()
x_r = x[:, :self.channels//2, :, :]
x_i = x[:, self.channels//2:, :, :]
x = torch.complex(x_r, x_i)
x = torch.fft.irfft(x, dim=3, norm="ortho")
else:
x = x.float()
x = torch.fft.rfft(x, dim=3, norm="ortho")
x_real = x.real
x_imag = x.imag
x = torch.cat([x_real, x_imag], dim=1)
return x
class DualPathRNN(nn.Module):
"""
Dual-Path RNN in Separation Network.
Args:
d_model (int): The number of expected features in the input (input_size).
expand (int): Expansion factor used to calculate the hidden_size of LSTM.
bidirectional (bool): If True, becomes a bidirectional LSTM.
"""
def __init__(self, d_model, expand, bidirectional=True):
super(DualPathRNN, self).__init__()
self.d_model = d_model
self.hidden_size = d_model * expand
self.bidirectional = bidirectional
# Initialize LSTM layers and normalization layers
self.lstm_layers = nn.ModuleList([self._init_lstm_layer(self.d_model, self.hidden_size) for _ in range(2)])
self.linear_layers = nn.ModuleList([nn.Linear(self.hidden_size*2, self.d_model) for _ in range(2)])
self.norm_layers = nn.ModuleList([nn.GroupNorm(1, d_model) for _ in range(2)])
def _init_lstm_layer(self, d_model, hidden_size):
return LSTM(d_model, hidden_size, num_layers=1, bidirectional=self.bidirectional, batch_first=True)
def forward(self, x):
B, C, F, T = x.shape
# Process dual-path rnn
original_x = x
# Frequency-path
x = self.norm_layers[0](x)
x = x.transpose(1, 3).contiguous().view(B * T, F, C)
x, _ = self.lstm_layers[0](x)
x = self.linear_layers[0](x)
x = x.view(B, T, F, C).transpose(1, 3)
x = x + original_x
original_x = x
# Time-path
x = self.norm_layers[1](x)
x = x.transpose(1, 2).contiguous().view(B * F, C, T).transpose(1, 2)
x, _ = self.lstm_layers[1](x)
x = self.linear_layers[1](x)
x = x.transpose(1, 2).contiguous().view(B, F, C, T).transpose(1, 2)
x = x + original_x
return x
class DualPathMamba(nn.Module):
"""
Dual-Path Mamba.
"""
def __init__(self, d_model, d_stat, d_conv, d_expand):
super(DualPathMamba, self).__init__()
# Initialize mamba layers
self.mamba_layers = nn.ModuleList([MambaModule(d_model, d_stat, d_conv, d_expand) for _ in range(2)])
def forward(self, x):
B, C, F, T = x.shape
# Process dual-path mamba
# Frequency-path
x = x.transpose(1, 3).contiguous().view(B * T, F, C)
x = self.mamba_layers[0](x)
x = x.view(B, T, F, C).transpose(1, 3)
# Time-path
x = x.transpose(1, 2).contiguous().view(B * F, C, T).transpose(1, 2)
x = self.mamba_layers[1](x)
x = x.transpose(1, 2).contiguous().view(B, F, C, T).transpose(1, 2)
return x
class SeparationNet(nn.Module):
"""
Implements a simplified Sparse Down-sample block in an encoder architecture.
Args:
- channels (int): Number input channels.
- expand (int): Expansion factor used to calculate the hidden_size of LSTM.
- num_layers (int): Number of dual-path layers.
- use_mamba (bool): If true, use the Mamba module to replace the RNN.
- d_stat (int), d_conv (int), d_expand (int): These are built-in parameters of the Mamba model.
"""
def __init__(self, channels, expand=1, num_layers=6, use_mamba=True, d_stat=16, d_conv=4, d_expand=2):
super(SeparationNet, self).__init__()
self.num_layers = num_layers
if use_mamba:
self.dp_modules = nn.ModuleList([
DualPathMamba(channels * (2 if i % 2 == 1 else 1), d_stat, d_conv, d_expand * (2 if i % 2 == 1 else 1)) for i in range(num_layers)
])
else:
self.dp_modules = nn.ModuleList([
DualPathRNN(channels * (2 if i % 2 == 1 else 1), expand) for i in range(num_layers)
])
self.feature_conversion = nn.ModuleList([
FeatureConversion(channels * 2 , inverse = False if i % 2 == 0 else True) for i in range(num_layers)
])
def forward(self, x):
for i in range(self.num_layers):
x = self.dp_modules[i](x)
x = self.feature_conversion[i](x)
return x
|