File size: 8,040 Bytes
51e2f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'

import time
import numpy as np
import torch
import torch.nn as nn
import yaml
from ml_collections import ConfigDict
from omegaconf import OmegaConf


def get_model_from_config(model_type, config_path):
    with open(config_path) as f:
        if model_type == 'htdemucs':
            config = OmegaConf.load(config_path)
        else:
            config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))

    if model_type == 'mdx23c':
        from models.mdx23c_tfc_tdf_v3 import TFC_TDF_net
        model = TFC_TDF_net(config)
    elif model_type == 'htdemucs':
        from models.demucs4ht import get_model
        model = get_model(config)
    elif model_type == 'segm_models':
        from models.segm_models import Segm_Models_Net
        model = Segm_Models_Net(config)
    elif model_type == 'torchseg':
        from models.torchseg_models import Torchseg_Net
        model = Torchseg_Net(config)
    elif model_type == 'mel_band_roformer':
        from models.bs_roformer import MelBandRoformer
        model = MelBandRoformer(
            **dict(config.model)
        )
    elif model_type == 'bs_roformer':
        from models.bs_roformer import BSRoformer
        model = BSRoformer(
            **dict(config.model)
        )
    elif model_type == 'swin_upernet':
        from models.upernet_swin_transformers import Swin_UperNet_Model
        model = Swin_UperNet_Model(config)
    elif model_type == 'bandit':
        from models.bandit.core.model import MultiMaskMultiSourceBandSplitRNNSimple
        model = MultiMaskMultiSourceBandSplitRNNSimple(
            **config.model
        )
    elif model_type == 'scnet_unofficial':
        from models.scnet_unofficial import SCNet
        model = SCNet(
            **config.model
        )
    elif model_type == 'scnet':
        from models.scnet import SCNet
        model = SCNet(
            **config.model
        )
    else:
        print('Unknown model: {}'.format(model_type))
        model = None

    return model, config


def demix_track(config, model, mix, device):
    C = config.audio.chunk_size
    N = config.inference.num_overlap
    fade_size = C // 10
    step = int(C // N)
    border = C - step
    batch_size = config.inference.batch_size

    length_init = mix.shape[-1]

    # Do pad from the beginning and end to account floating window results better
    if length_init > 2 * border and (border > 0):
        mix = nn.functional.pad(mix, (border, border), mode='reflect')

    # Prepare windows arrays (do 1 time for speed up). This trick repairs click problems on the edges of segment
    window_size = C
    fadein = torch.linspace(0, 1, fade_size)
    fadeout = torch.linspace(1, 0, fade_size)
    window_start = torch.ones(window_size)
    window_middle = torch.ones(window_size)
    window_finish = torch.ones(window_size)
    window_start[-fade_size:] *= fadeout # First audio chunk, no fadein
    window_finish[:fade_size] *= fadein # Last audio chunk, no fadeout
    window_middle[-fade_size:] *= fadeout
    window_middle[:fade_size] *= fadein

    with torch.cuda.amp.autocast():
        with torch.inference_mode():
            if config.training.target_instrument is not None:
                req_shape = (1, ) + tuple(mix.shape)
            else:
                req_shape = (len(config.training.instruments),) + tuple(mix.shape)

            result = torch.zeros(req_shape, dtype=torch.float32)
            counter = torch.zeros(req_shape, dtype=torch.float32)
            i = 0
            batch_data = []
            batch_locations = []
            while i < mix.shape[1]:
                # print(i, i + C, mix.shape[1])
                part = mix[:, i:i + C].to(device)
                length = part.shape[-1]
                if length < C:
                    if length > C // 2 + 1:
                        part = nn.functional.pad(input=part, pad=(0, C - length), mode='reflect')
                    else:
                        part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
                batch_data.append(part)
                batch_locations.append((i, length))
                i += step

                if len(batch_data) >= batch_size or (i >= mix.shape[1]):
                    arr = torch.stack(batch_data, dim=0)
                    x = model(arr)

                    window = window_middle
                    if i - step == 0:  # First audio chunk, no fadein
                        window = window_start
                    elif i >= mix.shape[1]:  # Last audio chunk, no fadeout
                        window = window_finish

                    for j in range(len(batch_locations)):
                        start, l = batch_locations[j]
                        result[..., start:start+l] += x[j][..., :l].cpu() * window[..., :l]
                        counter[..., start:start+l] += window[..., :l]

                    batch_data = []
                    batch_locations = []

            estimated_sources = result / counter
            estimated_sources = estimated_sources.cpu().numpy()
            np.nan_to_num(estimated_sources, copy=False, nan=0.0)

            if length_init > 2 * border and (border > 0):
                # Remove pad
                estimated_sources = estimated_sources[..., border:-border]

    if config.training.target_instrument is None:
        return {k: v for k, v in zip(config.training.instruments, estimated_sources)}
    else:
        return {k: v for k, v in zip([config.training.target_instrument], estimated_sources)}


def demix_track_demucs(config, model, mix, device):
    S = len(config.training.instruments)
    C = config.training.samplerate * config.training.segment
    N = config.inference.num_overlap
    batch_size = config.inference.batch_size
    step = C // N
    # print(S, C, N, step, mix.shape, mix.device)

    with torch.cuda.amp.autocast(enabled=config.training.use_amp):
        with torch.inference_mode():
            req_shape = (S, ) + tuple(mix.shape)
            result = torch.zeros(req_shape, dtype=torch.float32)
            counter = torch.zeros(req_shape, dtype=torch.float32)
            i = 0
            batch_data = []
            batch_locations = []
            while i < mix.shape[1]:
                # print(i, i + C, mix.shape[1])
                part = mix[:, i:i + C].to(device)
                length = part.shape[-1]
                if length < C:
                    part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
                batch_data.append(part)
                batch_locations.append((i, length))
                i += step

                if len(batch_data) >= batch_size or (i >= mix.shape[1]):
                    arr = torch.stack(batch_data, dim=0)
                    x = model(arr)
                    for j in range(len(batch_locations)):
                        start, l = batch_locations[j]
                        result[..., start:start+l] += x[j][..., :l].cpu()
                        counter[..., start:start+l] += 1.
                    batch_data = []
                    batch_locations = []

            estimated_sources = result / counter
            estimated_sources = estimated_sources.cpu().numpy()
            np.nan_to_num(estimated_sources, copy=False, nan=0.0)

    if S > 1:
        return {k: v for k, v in zip(config.training.instruments, estimated_sources)}
    else:
        return estimated_sources


def sdr(references, estimates):
    # compute SDR for one song
    delta = 1e-7  # avoid numerical errors
    num = np.sum(np.square(references), axis=(1, 2))
    den = np.sum(np.square(references - estimates), axis=(1, 2))
    num += delta
    den += delta
    return 10 * np.log10(num / den)