poiqazwsx's picture
Upload 57 files
51e2f90
raw
history blame
4.5 kB
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import argparse
import time
import librosa
from tqdm import tqdm
import sys
import os
import glob
import torch
import numpy as np
import soundfile as sf
import torch.nn as nn
from utils import demix_track, demix_track_demucs, get_model_from_config
import warnings
warnings.filterwarnings("ignore")
def run_folder(model, args, config, device, verbose=False):
start_time = time.time()
model.eval()
all_mixtures_path = glob.glob(args.input_folder + '/*.*')
print('Total files found: {}'.format(len(all_mixtures_path)))
instruments = config.training.instruments
if config.training.target_instrument is not None:
instruments = [config.training.target_instrument]
if not os.path.isdir(args.store_dir):
os.mkdir(args.store_dir)
if not verbose:
all_mixtures_path = tqdm(all_mixtures_path)
for path in all_mixtures_path:
if not verbose:
all_mixtures_path.set_postfix({'track': os.path.basename(path)})
try:
# mix, sr = sf.read(path)
mix, sr = librosa.load(path, sr=44100, mono=False)
mix = mix.T
except Exception as e:
print('Can read track: {}'.format(path))
print('Error message: {}'.format(str(e)))
continue
# Convert mono to stereo if needed
if len(mix.shape) == 1:
mix = np.stack([mix, mix], axis=-1)
mixture = torch.tensor(mix.T, dtype=torch.float32)
if args.model_type == 'htdemucs':
res = demix_track_demucs(config, model, mixture, device)
else:
res = demix_track(config, model, mixture, device)
for instr in instruments:
sf.write("{}/{}_{}.wav".format(args.store_dir, os.path.basename(path)[:-4], instr), res[instr].T, sr, subtype='FLOAT')
if 'vocals' in instruments and args.extract_instrumental:
instrum_file_name = "{}/{}_{}.wav".format(args.store_dir, os.path.basename(path)[:-4], 'instrumental')
sf.write(instrum_file_name, mix - res['vocals'].T, sr, subtype='FLOAT')
time.sleep(1)
print("Elapsed time: {:.2f} sec".format(time.time() - start_time))
def proc_folder(args):
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default='mdx23c', help="One of mdx23c, htdemucs, segm_models, mel_band_roformer, bs_roformer, swin_upernet, bandit")
parser.add_argument("--config_path", type=str, help="path to config file")
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to valid weights")
parser.add_argument("--input_folder", type=str, help="folder with mixtures to process")
parser.add_argument("--store_dir", default="", type=str, help="path to store results as wav file")
parser.add_argument("--device_ids", nargs='+', type=int, default=0, help='list of gpu ids')
parser.add_argument("--extract_instrumental", action='store_true', help="invert vocals to get instrumental if provided")
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
torch.backends.cudnn.benchmark = True
model, config = get_model_from_config(args.model_type, args.config_path)
if args.start_check_point != '':
print('Start from checkpoint: {}'.format(args.start_check_point))
state_dict = torch.load(args.start_check_point)
if args.model_type == 'htdemucs':
# Fix for htdemucs pround etrained models
if 'state' in state_dict:
state_dict = state_dict['state']
model.load_state_dict(state_dict)
print("Instruments: {}".format(config.training.instruments))
if torch.cuda.is_available():
device_ids = args.device_ids
if type(device_ids)==int:
device = torch.device(f'cuda:{device_ids}')
model = model.to(device)
else:
device = torch.device(f'cuda:{device_ids[0]}')
model = nn.DataParallel(model, device_ids=device_ids).to(device)
else:
device = 'cpu'
print('CUDA is not avilable. Run inference on CPU. It will be very slow...')
model = model.to(device)
run_folder(model, args, config, device, verbose=False)
if __name__ == "__main__":
proc_folder(None)