|
import torch
|
|
import torch.nn as nn
|
|
import torchseg as smp
|
|
|
|
|
|
class STFT:
|
|
def __init__(self, config):
|
|
self.n_fft = config.n_fft
|
|
self.hop_length = config.hop_length
|
|
self.window = torch.hann_window(window_length=self.n_fft, periodic=True)
|
|
self.dim_f = config.dim_f
|
|
|
|
def __call__(self, x):
|
|
window = self.window.to(x.device)
|
|
batch_dims = x.shape[:-2]
|
|
c, t = x.shape[-2:]
|
|
x = x.reshape([-1, t])
|
|
x = torch.stft(
|
|
x,
|
|
n_fft=self.n_fft,
|
|
hop_length=self.hop_length,
|
|
window=window,
|
|
center=True,
|
|
return_complex=True
|
|
)
|
|
x = torch.view_as_real(x)
|
|
x = x.permute([0, 3, 1, 2])
|
|
x = x.reshape([*batch_dims, c, 2, -1, x.shape[-1]]).reshape([*batch_dims, c * 2, -1, x.shape[-1]])
|
|
return x[..., :self.dim_f, :]
|
|
|
|
def inverse(self, x):
|
|
window = self.window.to(x.device)
|
|
batch_dims = x.shape[:-3]
|
|
c, f, t = x.shape[-3:]
|
|
n = self.n_fft // 2 + 1
|
|
f_pad = torch.zeros([*batch_dims, c, n - f, t]).to(x.device)
|
|
x = torch.cat([x, f_pad], -2)
|
|
x = x.reshape([*batch_dims, c // 2, 2, n, t]).reshape([-1, 2, n, t])
|
|
x = x.permute([0, 2, 3, 1])
|
|
x = x[..., 0] + x[..., 1] * 1.j
|
|
x = torch.istft(
|
|
x,
|
|
n_fft=self.n_fft,
|
|
hop_length=self.hop_length,
|
|
window=window,
|
|
center=True
|
|
)
|
|
x = x.reshape([*batch_dims, 2, -1])
|
|
return x
|
|
|
|
|
|
def get_act(act_type):
|
|
if act_type == 'gelu':
|
|
return nn.GELU()
|
|
elif act_type == 'relu':
|
|
return nn.ReLU()
|
|
elif act_type[:3] == 'elu':
|
|
alpha = float(act_type.replace('elu', ''))
|
|
return nn.ELU(alpha)
|
|
else:
|
|
raise Exception
|
|
|
|
|
|
def get_decoder(config, c):
|
|
decoder = None
|
|
decoder_options = dict()
|
|
if config.model.decoder_type == 'unet':
|
|
try:
|
|
decoder_options = dict(config.decoder_unet)
|
|
except:
|
|
pass
|
|
decoder = smp.Unet(
|
|
encoder_name=config.model.encoder_name,
|
|
encoder_weights="imagenet",
|
|
in_channels=c,
|
|
classes=c,
|
|
**decoder_options,
|
|
)
|
|
elif config.model.decoder_type == 'fpn':
|
|
try:
|
|
decoder_options = dict(config.decoder_fpn)
|
|
except:
|
|
pass
|
|
decoder = smp.FPN(
|
|
encoder_name=config.model.encoder_name,
|
|
encoder_weights="imagenet",
|
|
in_channels=c,
|
|
classes=c,
|
|
**decoder_options,
|
|
)
|
|
elif config.model.decoder_type == 'unet++':
|
|
try:
|
|
decoder_options = dict(config.decoder_unet_plus_plus)
|
|
except:
|
|
pass
|
|
decoder = smp.UnetPlusPlus(
|
|
encoder_name=config.model.encoder_name,
|
|
encoder_weights="imagenet",
|
|
in_channels=c,
|
|
classes=c,
|
|
**decoder_options,
|
|
)
|
|
elif config.model.decoder_type == 'manet':
|
|
try:
|
|
decoder_options = dict(config.decoder_manet)
|
|
except:
|
|
pass
|
|
decoder = smp.MAnet(
|
|
encoder_name=config.model.encoder_name,
|
|
encoder_weights="imagenet",
|
|
in_channels=c,
|
|
classes=c,
|
|
**decoder_options,
|
|
)
|
|
elif config.model.decoder_type == 'linknet':
|
|
try:
|
|
decoder_options = dict(config.decoder_linknet)
|
|
except:
|
|
pass
|
|
decoder = smp.Linknet(
|
|
encoder_name=config.model.encoder_name,
|
|
encoder_weights="imagenet",
|
|
in_channels=c,
|
|
classes=c,
|
|
**decoder_options,
|
|
)
|
|
elif config.model.decoder_type == 'pspnet':
|
|
try:
|
|
decoder_options = dict(config.decoder_pspnet)
|
|
except:
|
|
pass
|
|
decoder = smp.PSPNet(
|
|
encoder_name=config.model.encoder_name,
|
|
encoder_weights="imagenet",
|
|
in_channels=c,
|
|
classes=c,
|
|
**decoder_options,
|
|
)
|
|
elif config.model.decoder_type == 'pspnet':
|
|
try:
|
|
decoder_options = dict(config.decoder_pspnet)
|
|
except:
|
|
pass
|
|
decoder = smp.PSPNet(
|
|
encoder_name=config.model.encoder_name,
|
|
encoder_weights="imagenet",
|
|
in_channels=c,
|
|
classes=c,
|
|
**decoder_options,
|
|
)
|
|
elif config.model.decoder_type == 'pan':
|
|
try:
|
|
decoder_options = dict(config.decoder_pan)
|
|
except:
|
|
pass
|
|
decoder = smp.PAN(
|
|
encoder_name=config.model.encoder_name,
|
|
encoder_weights="imagenet",
|
|
in_channels=c,
|
|
classes=c,
|
|
**decoder_options,
|
|
)
|
|
elif config.model.decoder_type == 'deeplabv3':
|
|
try:
|
|
decoder_options = dict(config.decoder_deeplabv3)
|
|
except:
|
|
pass
|
|
decoder = smp.DeepLabV3(
|
|
encoder_name=config.model.encoder_name,
|
|
encoder_weights="imagenet",
|
|
in_channels=c,
|
|
classes=c,
|
|
**decoder_options,
|
|
)
|
|
elif config.model.decoder_type == 'deeplabv3plus':
|
|
try:
|
|
decoder_options = dict(config.decoder_deeplabv3plus)
|
|
except:
|
|
pass
|
|
decoder = smp.DeepLabV3Plus(
|
|
encoder_name=config.model.encoder_name,
|
|
encoder_weights="imagenet",
|
|
in_channels=c,
|
|
classes=c,
|
|
**decoder_options,
|
|
)
|
|
return decoder
|
|
|
|
|
|
class Torchseg_Net(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
act = get_act(act_type=config.model.act)
|
|
|
|
self.num_target_instruments = 1 if config.training.target_instrument else len(config.training.instruments)
|
|
self.num_subbands = config.model.num_subbands
|
|
|
|
dim_c = self.num_subbands * config.audio.num_channels * 2
|
|
c = config.model.num_channels
|
|
f = config.audio.dim_f // self.num_subbands
|
|
|
|
self.first_conv = nn.Conv2d(dim_c, c, 1, 1, 0, bias=False)
|
|
|
|
self.unet_model = get_decoder(config, c)
|
|
|
|
self.final_conv = nn.Sequential(
|
|
nn.Conv2d(c + dim_c, c, 1, 1, 0, bias=False),
|
|
act,
|
|
nn.Conv2d(c, self.num_target_instruments * dim_c, 1, 1, 0, bias=False)
|
|
)
|
|
|
|
self.stft = STFT(config.audio)
|
|
|
|
def cac2cws(self, x):
|
|
k = self.num_subbands
|
|
b, c, f, t = x.shape
|
|
x = x.reshape(b, c, k, f // k, t)
|
|
x = x.reshape(b, c * k, f // k, t)
|
|
return x
|
|
|
|
def cws2cac(self, x):
|
|
k = self.num_subbands
|
|
b, c, f, t = x.shape
|
|
x = x.reshape(b, c // k, k, f, t)
|
|
x = x.reshape(b, c // k, f * k, t)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.stft(x)
|
|
|
|
mix = x = self.cac2cws(x)
|
|
|
|
first_conv_out = x = self.first_conv(x)
|
|
|
|
x = x.transpose(-1, -2)
|
|
|
|
x = self.unet_model(x)
|
|
|
|
x = x.transpose(-1, -2)
|
|
|
|
x = x * first_conv_out
|
|
|
|
x = self.final_conv(torch.cat([mix, x], 1))
|
|
|
|
x = self.cws2cac(x)
|
|
|
|
if self.num_target_instruments > 1:
|
|
b, c, f, t = x.shape
|
|
x = x.reshape(b, self.num_target_instruments, -1, f, t)
|
|
|
|
x = self.stft.inverse(x)
|
|
return x
|
|
|