poiqazwsx's picture
Upload 57 files
51e2f90
raw
history blame
8.04 kB
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import time
import numpy as np
import torch
import torch.nn as nn
import yaml
from ml_collections import ConfigDict
from omegaconf import OmegaConf
def get_model_from_config(model_type, config_path):
with open(config_path) as f:
if model_type == 'htdemucs':
config = OmegaConf.load(config_path)
else:
config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
if model_type == 'mdx23c':
from models.mdx23c_tfc_tdf_v3 import TFC_TDF_net
model = TFC_TDF_net(config)
elif model_type == 'htdemucs':
from models.demucs4ht import get_model
model = get_model(config)
elif model_type == 'segm_models':
from models.segm_models import Segm_Models_Net
model = Segm_Models_Net(config)
elif model_type == 'torchseg':
from models.torchseg_models import Torchseg_Net
model = Torchseg_Net(config)
elif model_type == 'mel_band_roformer':
from models.bs_roformer import MelBandRoformer
model = MelBandRoformer(
**dict(config.model)
)
elif model_type == 'bs_roformer':
from models.bs_roformer import BSRoformer
model = BSRoformer(
**dict(config.model)
)
elif model_type == 'swin_upernet':
from models.upernet_swin_transformers import Swin_UperNet_Model
model = Swin_UperNet_Model(config)
elif model_type == 'bandit':
from models.bandit.core.model import MultiMaskMultiSourceBandSplitRNNSimple
model = MultiMaskMultiSourceBandSplitRNNSimple(
**config.model
)
elif model_type == 'scnet_unofficial':
from models.scnet_unofficial import SCNet
model = SCNet(
**config.model
)
elif model_type == 'scnet':
from models.scnet import SCNet
model = SCNet(
**config.model
)
else:
print('Unknown model: {}'.format(model_type))
model = None
return model, config
def demix_track(config, model, mix, device):
C = config.audio.chunk_size
N = config.inference.num_overlap
fade_size = C // 10
step = int(C // N)
border = C - step
batch_size = config.inference.batch_size
length_init = mix.shape[-1]
# Do pad from the beginning and end to account floating window results better
if length_init > 2 * border and (border > 0):
mix = nn.functional.pad(mix, (border, border), mode='reflect')
# Prepare windows arrays (do 1 time for speed up). This trick repairs click problems on the edges of segment
window_size = C
fadein = torch.linspace(0, 1, fade_size)
fadeout = torch.linspace(1, 0, fade_size)
window_start = torch.ones(window_size)
window_middle = torch.ones(window_size)
window_finish = torch.ones(window_size)
window_start[-fade_size:] *= fadeout # First audio chunk, no fadein
window_finish[:fade_size] *= fadein # Last audio chunk, no fadeout
window_middle[-fade_size:] *= fadeout
window_middle[:fade_size] *= fadein
with torch.cuda.amp.autocast():
with torch.inference_mode():
if config.training.target_instrument is not None:
req_shape = (1, ) + tuple(mix.shape)
else:
req_shape = (len(config.training.instruments),) + tuple(mix.shape)
result = torch.zeros(req_shape, dtype=torch.float32)
counter = torch.zeros(req_shape, dtype=torch.float32)
i = 0
batch_data = []
batch_locations = []
while i < mix.shape[1]:
# print(i, i + C, mix.shape[1])
part = mix[:, i:i + C].to(device)
length = part.shape[-1]
if length < C:
if length > C // 2 + 1:
part = nn.functional.pad(input=part, pad=(0, C - length), mode='reflect')
else:
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
batch_data.append(part)
batch_locations.append((i, length))
i += step
if len(batch_data) >= batch_size or (i >= mix.shape[1]):
arr = torch.stack(batch_data, dim=0)
x = model(arr)
window = window_middle
if i - step == 0: # First audio chunk, no fadein
window = window_start
elif i >= mix.shape[1]: # Last audio chunk, no fadeout
window = window_finish
for j in range(len(batch_locations)):
start, l = batch_locations[j]
result[..., start:start+l] += x[j][..., :l].cpu() * window[..., :l]
counter[..., start:start+l] += window[..., :l]
batch_data = []
batch_locations = []
estimated_sources = result / counter
estimated_sources = estimated_sources.cpu().numpy()
np.nan_to_num(estimated_sources, copy=False, nan=0.0)
if length_init > 2 * border and (border > 0):
# Remove pad
estimated_sources = estimated_sources[..., border:-border]
if config.training.target_instrument is None:
return {k: v for k, v in zip(config.training.instruments, estimated_sources)}
else:
return {k: v for k, v in zip([config.training.target_instrument], estimated_sources)}
def demix_track_demucs(config, model, mix, device):
S = len(config.training.instruments)
C = config.training.samplerate * config.training.segment
N = config.inference.num_overlap
batch_size = config.inference.batch_size
step = C // N
# print(S, C, N, step, mix.shape, mix.device)
with torch.cuda.amp.autocast(enabled=config.training.use_amp):
with torch.inference_mode():
req_shape = (S, ) + tuple(mix.shape)
result = torch.zeros(req_shape, dtype=torch.float32)
counter = torch.zeros(req_shape, dtype=torch.float32)
i = 0
batch_data = []
batch_locations = []
while i < mix.shape[1]:
# print(i, i + C, mix.shape[1])
part = mix[:, i:i + C].to(device)
length = part.shape[-1]
if length < C:
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
batch_data.append(part)
batch_locations.append((i, length))
i += step
if len(batch_data) >= batch_size or (i >= mix.shape[1]):
arr = torch.stack(batch_data, dim=0)
x = model(arr)
for j in range(len(batch_locations)):
start, l = batch_locations[j]
result[..., start:start+l] += x[j][..., :l].cpu()
counter[..., start:start+l] += 1.
batch_data = []
batch_locations = []
estimated_sources = result / counter
estimated_sources = estimated_sources.cpu().numpy()
np.nan_to_num(estimated_sources, copy=False, nan=0.0)
if S > 1:
return {k: v for k, v in zip(config.training.instruments, estimated_sources)}
else:
return estimated_sources
def sdr(references, estimates):
# compute SDR for one song
delta = 1e-7 # avoid numerical errors
num = np.sum(np.square(references), axis=(1, 2))
den = np.sum(np.square(references - estimates), axis=(1, 2))
num += delta
den += delta
return 10 * np.log10(num / den)