|
from functools import partial
|
|
|
|
import torch
|
|
from torch import nn, einsum, Tensor
|
|
from torch.nn import Module, ModuleList
|
|
import torch.nn.functional as F
|
|
|
|
from models.bs_roformer.attend import Attend
|
|
|
|
from beartype.typing import Tuple, Optional, List, Callable
|
|
from beartype import beartype
|
|
|
|
from rotary_embedding_torch import RotaryEmbedding
|
|
|
|
from einops import rearrange, pack, unpack
|
|
from einops.layers.torch import Rearrange
|
|
|
|
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
|
|
def default(v, d):
|
|
return v if exists(v) else d
|
|
|
|
|
|
def pack_one(t, pattern):
|
|
return pack([t], pattern)
|
|
|
|
|
|
def unpack_one(t, ps, pattern):
|
|
return unpack(t, ps, pattern)[0]
|
|
|
|
|
|
|
|
|
|
def l2norm(t):
|
|
return F.normalize(t, dim = -1, p = 2)
|
|
|
|
|
|
class RMSNorm(Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.scale = dim ** 0.5
|
|
self.gamma = nn.Parameter(torch.ones(dim))
|
|
|
|
def forward(self, x):
|
|
return F.normalize(x, dim=-1) * self.scale * self.gamma
|
|
|
|
|
|
|
|
|
|
class FeedForward(Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
mult=4,
|
|
dropout=0.
|
|
):
|
|
super().__init__()
|
|
dim_inner = int(dim * mult)
|
|
self.net = nn.Sequential(
|
|
RMSNorm(dim),
|
|
nn.Linear(dim, dim_inner),
|
|
nn.GELU(),
|
|
nn.Dropout(dropout),
|
|
nn.Linear(dim_inner, dim),
|
|
nn.Dropout(dropout)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
class Attention(Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
heads=8,
|
|
dim_head=64,
|
|
dropout=0.,
|
|
rotary_embed=None,
|
|
flash=True
|
|
):
|
|
super().__init__()
|
|
self.heads = heads
|
|
self.scale = dim_head ** -0.5
|
|
dim_inner = heads * dim_head
|
|
|
|
self.rotary_embed = rotary_embed
|
|
|
|
self.attend = Attend(flash=flash, dropout=dropout)
|
|
|
|
self.norm = RMSNorm(dim)
|
|
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False)
|
|
|
|
self.to_gates = nn.Linear(dim, heads)
|
|
|
|
self.to_out = nn.Sequential(
|
|
nn.Linear(dim_inner, dim, bias=False),
|
|
nn.Dropout(dropout)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.norm(x)
|
|
|
|
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)
|
|
|
|
if exists(self.rotary_embed):
|
|
q = self.rotary_embed.rotate_queries_or_keys(q)
|
|
k = self.rotary_embed.rotate_queries_or_keys(k)
|
|
|
|
out = self.attend(q, k, v)
|
|
|
|
gates = self.to_gates(x)
|
|
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()
|
|
|
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
return self.to_out(out)
|
|
|
|
|
|
class LinearAttention(Module):
|
|
"""
|
|
this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al.
|
|
"""
|
|
|
|
@beartype
|
|
def __init__(
|
|
self,
|
|
*,
|
|
dim,
|
|
dim_head=32,
|
|
heads=8,
|
|
scale=8,
|
|
flash=False,
|
|
dropout=0.
|
|
):
|
|
super().__init__()
|
|
dim_inner = dim_head * heads
|
|
self.norm = RMSNorm(dim)
|
|
|
|
self.to_qkv = nn.Sequential(
|
|
nn.Linear(dim, dim_inner * 3, bias=False),
|
|
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
|
|
)
|
|
|
|
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
|
|
|
|
self.attend = Attend(
|
|
scale=scale,
|
|
dropout=dropout,
|
|
flash=flash
|
|
)
|
|
|
|
self.to_out = nn.Sequential(
|
|
Rearrange('b h d n -> b n (h d)'),
|
|
nn.Linear(dim_inner, dim, bias=False)
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x
|
|
):
|
|
x = self.norm(x)
|
|
|
|
q, k, v = self.to_qkv(x)
|
|
|
|
q, k = map(l2norm, (q, k))
|
|
q = q * self.temperature.exp()
|
|
|
|
out = self.attend(q, k, v)
|
|
|
|
return self.to_out(out)
|
|
|
|
|
|
class Transformer(Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
dim,
|
|
depth,
|
|
dim_head=64,
|
|
heads=8,
|
|
attn_dropout=0.,
|
|
ff_dropout=0.,
|
|
ff_mult=4,
|
|
norm_output=True,
|
|
rotary_embed=None,
|
|
flash_attn=True,
|
|
linear_attn=False
|
|
):
|
|
super().__init__()
|
|
self.layers = ModuleList([])
|
|
|
|
for _ in range(depth):
|
|
if linear_attn:
|
|
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn)
|
|
else:
|
|
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout,
|
|
rotary_embed=rotary_embed, flash=flash_attn)
|
|
|
|
self.layers.append(ModuleList([
|
|
attn,
|
|
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
|
|
]))
|
|
|
|
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
|
|
for attn, ff in self.layers:
|
|
x = attn(x) + x
|
|
x = ff(x) + x
|
|
|
|
return self.norm(x)
|
|
|
|
|
|
|
|
|
|
class BandSplit(Module):
|
|
@beartype
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
dim_inputs: Tuple[int, ...]
|
|
):
|
|
super().__init__()
|
|
self.dim_inputs = dim_inputs
|
|
self.to_features = ModuleList([])
|
|
|
|
for dim_in in dim_inputs:
|
|
net = nn.Sequential(
|
|
RMSNorm(dim_in),
|
|
nn.Linear(dim_in, dim)
|
|
)
|
|
|
|
self.to_features.append(net)
|
|
|
|
def forward(self, x):
|
|
x = x.split(self.dim_inputs, dim=-1)
|
|
|
|
outs = []
|
|
for split_input, to_feature in zip(x, self.to_features):
|
|
split_output = to_feature(split_input)
|
|
outs.append(split_output)
|
|
|
|
return torch.stack(outs, dim=-2)
|
|
|
|
|
|
def MLP(
|
|
dim_in,
|
|
dim_out,
|
|
dim_hidden=None,
|
|
depth=1,
|
|
activation=nn.Tanh
|
|
):
|
|
dim_hidden = default(dim_hidden, dim_in)
|
|
|
|
net = []
|
|
dims = (dim_in, *((dim_hidden,) * (depth - 1)), dim_out)
|
|
|
|
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])):
|
|
is_last = ind == (len(dims) - 2)
|
|
|
|
net.append(nn.Linear(layer_dim_in, layer_dim_out))
|
|
|
|
if is_last:
|
|
continue
|
|
|
|
net.append(activation())
|
|
|
|
return nn.Sequential(*net)
|
|
|
|
|
|
class MaskEstimator(Module):
|
|
@beartype
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
dim_inputs: Tuple[int, ...],
|
|
depth,
|
|
mlp_expansion_factor=4
|
|
):
|
|
super().__init__()
|
|
self.dim_inputs = dim_inputs
|
|
self.to_freqs = ModuleList([])
|
|
dim_hidden = dim * mlp_expansion_factor
|
|
|
|
for dim_in in dim_inputs:
|
|
net = []
|
|
|
|
mlp = nn.Sequential(
|
|
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
|
|
nn.GLU(dim=-1)
|
|
)
|
|
|
|
self.to_freqs.append(mlp)
|
|
|
|
def forward(self, x):
|
|
x = x.unbind(dim=-2)
|
|
|
|
outs = []
|
|
|
|
for band_features, mlp in zip(x, self.to_freqs):
|
|
freq_out = mlp(band_features)
|
|
outs.append(freq_out)
|
|
|
|
return torch.cat(outs, dim=-1)
|
|
|
|
|
|
|
|
|
|
DEFAULT_FREQS_PER_BANDS = (
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
12, 12, 12, 12, 12, 12, 12, 12,
|
|
24, 24, 24, 24, 24, 24, 24, 24,
|
|
48, 48, 48, 48, 48, 48, 48, 48,
|
|
128, 129,
|
|
)
|
|
|
|
|
|
class BSRoformer(Module):
|
|
|
|
@beartype
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
*,
|
|
depth,
|
|
stereo=False,
|
|
num_stems=1,
|
|
time_transformer_depth=2,
|
|
freq_transformer_depth=2,
|
|
linear_transformer_depth=0,
|
|
freqs_per_bands: Tuple[int, ...] = DEFAULT_FREQS_PER_BANDS,
|
|
|
|
dim_head=64,
|
|
heads=8,
|
|
attn_dropout=0.,
|
|
ff_dropout=0.,
|
|
flash_attn=True,
|
|
dim_freqs_in=1025,
|
|
stft_n_fft=2048,
|
|
stft_hop_length=512,
|
|
|
|
stft_win_length=2048,
|
|
stft_normalized=False,
|
|
stft_window_fn: Optional[Callable] = None,
|
|
mask_estimator_depth=2,
|
|
multi_stft_resolution_loss_weight=1.,
|
|
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
|
multi_stft_hop_size=147,
|
|
multi_stft_normalized=False,
|
|
multi_stft_window_fn: Callable = torch.hann_window
|
|
):
|
|
super().__init__()
|
|
|
|
self.stereo = stereo
|
|
self.audio_channels = 2 if stereo else 1
|
|
self.num_stems = num_stems
|
|
|
|
self.layers = ModuleList([])
|
|
|
|
transformer_kwargs = dict(
|
|
dim=dim,
|
|
heads=heads,
|
|
dim_head=dim_head,
|
|
attn_dropout=attn_dropout,
|
|
ff_dropout=ff_dropout,
|
|
flash_attn=flash_attn,
|
|
norm_output=False
|
|
)
|
|
|
|
time_rotary_embed = RotaryEmbedding(dim=dim_head)
|
|
freq_rotary_embed = RotaryEmbedding(dim=dim_head)
|
|
|
|
for _ in range(depth):
|
|
tran_modules = []
|
|
if linear_transformer_depth > 0:
|
|
tran_modules.append(Transformer(depth=linear_transformer_depth, linear_attn=True, **transformer_kwargs))
|
|
tran_modules.append(
|
|
Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs)
|
|
)
|
|
tran_modules.append(
|
|
Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs)
|
|
)
|
|
self.layers.append(nn.ModuleList(tran_modules))
|
|
|
|
self.final_norm = RMSNorm(dim)
|
|
|
|
self.stft_kwargs = dict(
|
|
n_fft=stft_n_fft,
|
|
hop_length=stft_hop_length,
|
|
win_length=stft_win_length,
|
|
normalized=stft_normalized
|
|
)
|
|
|
|
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)
|
|
|
|
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, return_complex=True).shape[1]
|
|
|
|
assert len(freqs_per_bands) > 1
|
|
assert sum(
|
|
freqs_per_bands) == freqs, f'the number of freqs in the bands must equal {freqs} based on the STFT settings, but got {sum(freqs_per_bands)}'
|
|
|
|
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in freqs_per_bands)
|
|
|
|
self.band_split = BandSplit(
|
|
dim=dim,
|
|
dim_inputs=freqs_per_bands_with_complex
|
|
)
|
|
|
|
self.mask_estimators = nn.ModuleList([])
|
|
|
|
for _ in range(num_stems):
|
|
mask_estimator = MaskEstimator(
|
|
dim=dim,
|
|
dim_inputs=freqs_per_bands_with_complex,
|
|
depth=mask_estimator_depth
|
|
)
|
|
|
|
self.mask_estimators.append(mask_estimator)
|
|
|
|
|
|
|
|
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight
|
|
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes
|
|
self.multi_stft_n_fft = stft_n_fft
|
|
self.multi_stft_window_fn = multi_stft_window_fn
|
|
|
|
self.multi_stft_kwargs = dict(
|
|
hop_length=multi_stft_hop_size,
|
|
normalized=multi_stft_normalized
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
raw_audio,
|
|
target=None,
|
|
return_loss_breakdown=False
|
|
):
|
|
"""
|
|
einops
|
|
|
|
b - batch
|
|
f - freq
|
|
t - time
|
|
s - audio channel (1 for mono, 2 for stereo)
|
|
n - number of 'stems'
|
|
c - complex (2)
|
|
d - feature dimension
|
|
"""
|
|
|
|
device = raw_audio.device
|
|
|
|
if raw_audio.ndim == 2:
|
|
raw_audio = rearrange(raw_audio, 'b t -> b 1 t')
|
|
|
|
channels = raw_audio.shape[1]
|
|
assert (not self.stereo and channels == 1) or (
|
|
self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'
|
|
|
|
|
|
|
|
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')
|
|
|
|
stft_window = self.stft_window_fn(device=device)
|
|
|
|
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
|
|
stft_repr = torch.view_as_real(stft_repr)
|
|
|
|
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')
|
|
stft_repr = rearrange(stft_repr,
|
|
'b s f t c -> b (f s) t c')
|
|
|
|
x = rearrange(stft_repr, 'b f t c -> b t (f c)')
|
|
|
|
x = self.band_split(x)
|
|
|
|
|
|
|
|
for transformer_block in self.layers:
|
|
|
|
if len(transformer_block) == 3:
|
|
linear_transformer, time_transformer, freq_transformer = transformer_block
|
|
|
|
x, ft_ps = pack([x], 'b * d')
|
|
x = linear_transformer(x)
|
|
x, = unpack(x, ft_ps, 'b * d')
|
|
else:
|
|
time_transformer, freq_transformer = transformer_block
|
|
|
|
x = rearrange(x, 'b t f d -> b f t d')
|
|
x, ps = pack([x], '* t d')
|
|
|
|
x = time_transformer(x)
|
|
|
|
x, = unpack(x, ps, '* t d')
|
|
x = rearrange(x, 'b f t d -> b t f d')
|
|
x, ps = pack([x], '* f d')
|
|
|
|
x = freq_transformer(x)
|
|
|
|
x, = unpack(x, ps, '* f d')
|
|
|
|
x = self.final_norm(x)
|
|
|
|
num_stems = len(self.mask_estimators)
|
|
|
|
mask = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
|
|
mask = rearrange(mask, 'b n t (f c) -> b n f t c', c=2)
|
|
|
|
|
|
|
|
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')
|
|
|
|
|
|
|
|
stft_repr = torch.view_as_complex(stft_repr)
|
|
mask = torch.view_as_complex(mask)
|
|
|
|
stft_repr = stft_repr * mask
|
|
|
|
|
|
|
|
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)
|
|
|
|
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False)
|
|
|
|
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', s=self.audio_channels, n=num_stems)
|
|
|
|
if num_stems == 1:
|
|
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')
|
|
|
|
|
|
|
|
if not exists(target):
|
|
return recon_audio
|
|
|
|
if self.num_stems > 1:
|
|
assert target.ndim == 4 and target.shape[1] == self.num_stems
|
|
|
|
if target.ndim == 2:
|
|
target = rearrange(target, '... t -> ... 1 t')
|
|
|
|
target = target[..., :recon_audio.shape[-1]]
|
|
|
|
loss = F.l1_loss(recon_audio, target)
|
|
|
|
multi_stft_resolution_loss = 0.
|
|
|
|
for window_size in self.multi_stft_resolutions_window_sizes:
|
|
res_stft_kwargs = dict(
|
|
n_fft=max(window_size, self.multi_stft_n_fft),
|
|
win_length=window_size,
|
|
return_complex=True,
|
|
window=self.multi_stft_window_fn(window_size, device=device),
|
|
**self.multi_stft_kwargs,
|
|
)
|
|
|
|
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
|
|
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)
|
|
|
|
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
|
|
|
|
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight
|
|
|
|
total_loss = loss + weighted_multi_resolution_loss
|
|
|
|
if not return_loss_breakdown:
|
|
return total_loss
|
|
|
|
return total_loss, (loss, multi_stft_resolution_loss) |