from functools import partial import torch from torch import nn, einsum, Tensor from torch.nn import Module, ModuleList import torch.nn.functional as F from models.bs_roformer.attend import Attend from beartype.typing import Tuple, Optional, List, Callable from beartype import beartype from rotary_embedding_torch import RotaryEmbedding from einops import rearrange, pack, unpack, reduce, repeat from einops.layers.torch import Rearrange from librosa import filters # helper functions def exists(val): return val is not None def default(v, d): return v if exists(v) else d def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] def pad_at_dim(t, pad, dim=-1, value=0.): dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1) zeros = ((0, 0) * dims_from_right) return F.pad(t, (*zeros, *pad), value=value) def l2norm(t): return F.normalize(t, dim=-1, p=2) # norm class RMSNorm(Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): return F.normalize(x, dim=-1) * self.scale * self.gamma # attention class FeedForward(Module): def __init__( self, dim, mult=4, dropout=0. ): super().__init__() dim_inner = int(dim * mult) self.net = nn.Sequential( RMSNorm(dim), nn.Linear(dim, dim_inner), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim_inner, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(Module): def __init__( self, dim, heads=8, dim_head=64, dropout=0., rotary_embed=None, flash=True ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 dim_inner = heads * dim_head self.rotary_embed = rotary_embed self.attend = Attend(flash=flash, dropout=dropout) self.norm = RMSNorm(dim) self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False) self.to_gates = nn.Linear(dim, heads) self.to_out = nn.Sequential( nn.Linear(dim_inner, dim, bias=False), nn.Dropout(dropout) ) def forward(self, x): x = self.norm(x) q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads) if exists(self.rotary_embed): q = self.rotary_embed.rotate_queries_or_keys(q) k = self.rotary_embed.rotate_queries_or_keys(k) out = self.attend(q, k, v) gates = self.to_gates(x) out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid() out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class LinearAttention(Module): """ this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al. """ @beartype def __init__( self, *, dim, dim_head=32, heads=8, scale=8, flash=False, dropout=0. ): super().__init__() dim_inner = dim_head * heads self.norm = RMSNorm(dim) self.to_qkv = nn.Sequential( nn.Linear(dim, dim_inner * 3, bias=False), Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads) ) self.temperature = nn.Parameter(torch.ones(heads, 1, 1)) self.attend = Attend( scale=scale, dropout=dropout, flash=flash ) self.to_out = nn.Sequential( Rearrange('b h d n -> b n (h d)'), nn.Linear(dim_inner, dim, bias=False) ) def forward( self, x ): x = self.norm(x) q, k, v = self.to_qkv(x) q, k = map(l2norm, (q, k)) q = q * self.temperature.exp() out = self.attend(q, k, v) return self.to_out(out) class Transformer(Module): def __init__( self, *, dim, depth, dim_head=64, heads=8, attn_dropout=0., ff_dropout=0., ff_mult=4, norm_output=True, rotary_embed=None, flash_attn=True, linear_attn=False ): super().__init__() self.layers = ModuleList([]) for _ in range(depth): if linear_attn: attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn) else: attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, rotary_embed=rotary_embed, flash=flash_attn) self.layers.append(ModuleList([ attn, FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout) ])) self.norm = RMSNorm(dim) if norm_output else nn.Identity() def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) # bandsplit module class BandSplit(Module): @beartype def __init__( self, dim, dim_inputs: Tuple[int, ...] ): super().__init__() self.dim_inputs = dim_inputs self.to_features = ModuleList([]) for dim_in in dim_inputs: net = nn.Sequential( RMSNorm(dim_in), nn.Linear(dim_in, dim) ) self.to_features.append(net) def forward(self, x): x = x.split(self.dim_inputs, dim=-1) outs = [] for split_input, to_feature in zip(x, self.to_features): split_output = to_feature(split_input) outs.append(split_output) return torch.stack(outs, dim=-2) def MLP( dim_in, dim_out, dim_hidden=None, depth=1, activation=nn.Tanh ): dim_hidden = default(dim_hidden, dim_in) net = [] dims = (dim_in, *((dim_hidden,) * depth), dim_out) for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])): is_last = ind == (len(dims) - 2) net.append(nn.Linear(layer_dim_in, layer_dim_out)) if is_last: continue net.append(activation()) return nn.Sequential(*net) class MaskEstimator(Module): @beartype def __init__( self, dim, dim_inputs: Tuple[int, ...], depth, mlp_expansion_factor=4 ): super().__init__() self.dim_inputs = dim_inputs self.to_freqs = ModuleList([]) dim_hidden = dim * mlp_expansion_factor for dim_in in dim_inputs: net = [] mlp = nn.Sequential( MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth), nn.GLU(dim=-1) ) self.to_freqs.append(mlp) def forward(self, x): x = x.unbind(dim=-2) outs = [] for band_features, mlp in zip(x, self.to_freqs): freq_out = mlp(band_features) outs.append(freq_out) return torch.cat(outs, dim=-1) # main class class MelBandRoformer(Module): @beartype def __init__( self, dim, *, depth, stereo=False, num_stems=1, time_transformer_depth=2, freq_transformer_depth=2, linear_transformer_depth=0, num_bands=60, dim_head=64, heads=8, attn_dropout=0.1, ff_dropout=0.1, flash_attn=True, dim_freqs_in=1025, sample_rate=44100, # needed for mel filter bank from librosa stft_n_fft=2048, stft_hop_length=512, # 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction stft_win_length=2048, stft_normalized=False, stft_window_fn: Optional[Callable] = None, mask_estimator_depth=1, multi_stft_resolution_loss_weight=1., multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256), multi_stft_hop_size=147, multi_stft_normalized=False, multi_stft_window_fn: Callable = torch.hann_window, match_input_audio_length=False, # if True, pad output tensor to match length of input tensor ): super().__init__() self.stereo = stereo self.audio_channels = 2 if stereo else 1 self.num_stems = num_stems self.layers = ModuleList([]) transformer_kwargs = dict( dim=dim, heads=heads, dim_head=dim_head, attn_dropout=attn_dropout, ff_dropout=ff_dropout, flash_attn=flash_attn ) time_rotary_embed = RotaryEmbedding(dim=dim_head) freq_rotary_embed = RotaryEmbedding(dim=dim_head) for _ in range(depth): tran_modules = [] if linear_transformer_depth > 0: tran_modules.append(Transformer(depth=linear_transformer_depth, linear_attn=True, **transformer_kwargs)) tran_modules.append( Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs) ) tran_modules.append( Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs) ) self.layers.append(nn.ModuleList(tran_modules)) self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length) self.stft_kwargs = dict( n_fft=stft_n_fft, hop_length=stft_hop_length, win_length=stft_win_length, normalized=stft_normalized ) freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, return_complex=True).shape[1] # create mel filter bank # with librosa.filters.mel as in section 2 of paper mel_filter_bank_numpy = filters.mel(sr=sample_rate, n_fft=stft_n_fft, n_mels=num_bands) mel_filter_bank = torch.from_numpy(mel_filter_bank_numpy) # for some reason, it doesn't include the first freq? just force a value for now mel_filter_bank[0][0] = 1. # In some systems/envs we get 0.0 instead of ~1.9e-18 in the last position, # so let's force a positive value mel_filter_bank[-1, -1] = 1. # binary as in paper (then estimated masks are averaged for overlapping regions) freqs_per_band = mel_filter_bank > 0 assert freqs_per_band.any(dim=0).all(), 'all frequencies need to be covered by all bands for now' repeated_freq_indices = repeat(torch.arange(freqs), 'f -> b f', b=num_bands) freq_indices = repeated_freq_indices[freqs_per_band] if stereo: freq_indices = repeat(freq_indices, 'f -> f s', s=2) freq_indices = freq_indices * 2 + torch.arange(2) freq_indices = rearrange(freq_indices, 'f s -> (f s)') self.register_buffer('freq_indices', freq_indices, persistent=False) self.register_buffer('freqs_per_band', freqs_per_band, persistent=False) num_freqs_per_band = reduce(freqs_per_band, 'b f -> b', 'sum') num_bands_per_freq = reduce(freqs_per_band, 'b f -> f', 'sum') self.register_buffer('num_freqs_per_band', num_freqs_per_band, persistent=False) self.register_buffer('num_bands_per_freq', num_bands_per_freq, persistent=False) # band split and mask estimator freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in num_freqs_per_band.tolist()) self.band_split = BandSplit( dim=dim, dim_inputs=freqs_per_bands_with_complex ) self.mask_estimators = nn.ModuleList([]) for _ in range(num_stems): mask_estimator = MaskEstimator( dim=dim, dim_inputs=freqs_per_bands_with_complex, depth=mask_estimator_depth ) self.mask_estimators.append(mask_estimator) # for the multi-resolution stft loss self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes self.multi_stft_n_fft = stft_n_fft self.multi_stft_window_fn = multi_stft_window_fn self.multi_stft_kwargs = dict( hop_length=multi_stft_hop_size, normalized=multi_stft_normalized ) self.match_input_audio_length = match_input_audio_length def forward( self, raw_audio, target=None, return_loss_breakdown=False ): """ einops b - batch f - freq t - time s - audio channel (1 for mono, 2 for stereo) n - number of 'stems' c - complex (2) d - feature dimension """ device = raw_audio.device if raw_audio.ndim == 2: raw_audio = rearrange(raw_audio, 'b t -> b 1 t') batch, channels, raw_audio_length = raw_audio.shape istft_length = raw_audio_length if self.match_input_audio_length else None assert (not self.stereo and channels == 1) or ( self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)' # to stft raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t') stft_window = self.stft_window_fn(device=device) stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True) stft_repr = torch.view_as_real(stft_repr) stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c') stft_repr = rearrange(stft_repr, 'b s f t c -> b (f s) t c') # merge stereo / mono into the frequency, with frequency leading dimension, for band splitting # index out all frequencies for all frequency ranges across bands ascending in one go batch_arange = torch.arange(batch, device=device)[..., None] # account for stereo x = stft_repr[batch_arange, self.freq_indices] # fold the complex (real and imag) into the frequencies dimension x = rearrange(x, 'b f t c -> b t (f c)') x = self.band_split(x) # axial / hierarchical attention for transformer_block in self.layers: if len(transformer_block) == 3: linear_transformer, time_transformer, freq_transformer = transformer_block x, ft_ps = pack([x], 'b * d') x = linear_transformer(x) x, = unpack(x, ft_ps, 'b * d') else: time_transformer, freq_transformer = transformer_block x = rearrange(x, 'b t f d -> b f t d') x, ps = pack([x], '* t d') x = time_transformer(x) x, = unpack(x, ps, '* t d') x = rearrange(x, 'b f t d -> b t f d') x, ps = pack([x], '* f d') x = freq_transformer(x) x, = unpack(x, ps, '* f d') num_stems = len(self.mask_estimators) masks = torch.stack([fn(x) for fn in self.mask_estimators], dim=1) masks = rearrange(masks, 'b n t (f c) -> b n f t c', c=2) # modulate frequency representation stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c') # complex number multiplication stft_repr = torch.view_as_complex(stft_repr) masks = torch.view_as_complex(masks) masks = masks.type(stft_repr.dtype) # need to average the estimated mask for the overlapped frequencies scatter_indices = repeat(self.freq_indices, 'f -> b n f t', b=batch, n=num_stems, t=stft_repr.shape[-1]) stft_repr_expanded_stems = repeat(stft_repr, 'b 1 ... -> b n ...', n=num_stems) masks_summed = torch.zeros_like(stft_repr_expanded_stems).scatter_add_(2, scatter_indices, masks) denom = repeat(self.num_bands_per_freq, 'f -> (f r) 1', r=channels) masks_averaged = masks_summed / denom.clamp(min=1e-8) # modulate stft repr with estimated mask stft_repr = stft_repr * masks_averaged # istft stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels) recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False, length=istft_length) recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', b=batch, s=self.audio_channels, n=num_stems) if num_stems == 1: recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t') # if a target is passed in, calculate loss for learning if not exists(target): return recon_audio if self.num_stems > 1: assert target.ndim == 4 and target.shape[1] == self.num_stems if target.ndim == 2: target = rearrange(target, '... t -> ... 1 t') target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft loss = F.l1_loss(recon_audio, target) multi_stft_resolution_loss = 0. for window_size in self.multi_stft_resolutions_window_sizes: res_stft_kwargs = dict( n_fft=max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft win_length=window_size, return_complex=True, window=self.multi_stft_window_fn(window_size, device=device), **self.multi_stft_kwargs, ) recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs) target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs) multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y) weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight total_loss = loss + weighted_multi_resolution_loss if not return_loss_breakdown: return total_loss return total_loss, (loss, multi_stft_resolution_loss)