import gradio as gr
import pandas as pd
import polars as pl
import logging
logging.basicConfig(format='%(name)s - %(asctime)s - %(message)s', level=logging.INFO)
logging.info("loading data")
data = pl.read_parquet("hf://datasets/polinaeterna/hub_datasets_string_statistics/data/*.parquet")
logging.info("data loaded")
min_num_examples = data["num_examples"].min()
max_num_examples = data["num_examples"].max()
min_null_count = data["null_count"].min()
max_null_count = data["null_count"].max()
min_null_prop = data["null_proportion"].min()
max_null_prop = data["null_proportion"].max()
min_min = data["min"].min()
max_min = data["min"].max()
min_max = data["max"].min()
max_max = data["max"].max()
min_mean = data["mean"].min()
max_mean = data["mean"].max()
min_median = data["median"].min()
max_median = data["median"].max()
min_std = data["std"].min()
max_std = data["std"].max()
def urlize(dataset_name):
return f"[{dataset_name}](https://huggingface.co/datasets/{dataset_name})"
def filter_data(
min_num_examples_input, max_num_examples_input,
min_null_count_input, max_null_count_input,
min_null_prop_input, max_null_prop_input,
min_min_input, max_min_input,
min_max_input, max_max_input,
min_mean_input, max_mean_input,
min_median_input, max_median_input,
min_std_input, max_std_input,
sort_by,
column_name,
include_partial = False,
):
df = data.filter(
(pl.col("num_examples") >= min_num_examples_input) & (pl.col("num_examples") <= max_num_examples_input) &
(pl.col("null_count") >= min_null_count_input) & (pl.col("null_count") <= max_null_count_input) &
(pl.col("null_proportion") >= min_null_prop_input) & (pl.col("null_proportion") <= max_null_prop_input) &
(pl.col("min") >= min_min_input) & (pl.col("min") <= max_min_input) &
(pl.col("max") >= min_max_input) & (pl.col("max") <= max_max_input) &
(pl.col("mean") >= min_mean_input) & (pl.col("mean") <= max_mean_input) &
(pl.col("median") >= min_median_input) & (pl.col("median") <= max_median_input) &
(pl.col("std") >= min_std_input) & (pl.col("std") <= max_std_input)
)
if not include_partial:
df = df.filter((pl.col("partial") == include_partial))
if column_name:
df = df.filter(pl.col("column_name") == column_name)
if sort_by:
try:
sort_cols, sort_descs = parse_sort_by(sort_by)
except:
return [pd.DataFrame(), "incorrect sort string format"]
logging.info(sort_cols)
logging.info(sort_descs)
df = df.sort(
*sort_cols, descending=sort_descs if len(sort_descs) > 1 else sort_descs[0],
)
n_rows = df.shape[0]
n_splits = df.group_by(["dataset", "config", "split"]).len().shape[0]
n_datasets = df["dataset"].n_unique()
max_rows = 100
text = f"{n_rows} rows / {n_splits} unique splits / {n_datasets} unique datasets found{' (100 rows displayed).' if n_rows > max_rows else '.'} \n"
df = df.to_pandas()
df["dataset"] = df["dataset"].apply(urlize)
df = df.drop("histogram", axis=1)
logging.info(df.head(2))
if df.shape[0] > max_rows:
return df.head(max_rows), text
return df, text
def parse_sort_by(sort_string):
args = sort_string.split(";")
col_names, descs = [], []
for arg in args:
col_name, desc = arg.split(":")
col_names.append(col_name)
descs.append(True if desc == "desc" else False)
return col_names, descs
with gr.Blocks() as demo:
gr.Markdown(
"""
# 💫 Filter text datasets by string statistics 💫
### The raw data is here:
""")
html_code = f"""
"""
gr.HTML(value=html_code)
gr.Markdown("- Number of examples range")
with gr.Row():
with gr.Column():
min_num_examples_input = gr.Slider(min_num_examples, max_num_examples, min_num_examples, step=1, label="Min num examples value")
with gr.Column():
max_num_examples_input = gr.Slider(min_num_examples, max_num_examples, max_num_examples, step=1, label="Max num examples value")
gr.Markdown("- Null count range")
with gr.Row():
with gr.Column():
min_null_count_input = gr.Slider(min_null_count, max_null_count, min_null_count, step=1, label="Min null count value")
with gr.Column():
max_null_count_input = gr.Slider(min_null_count, max_null_count, max_null_count, step=1, label="Max null count value")
gr.Markdown("- Null proportion range")
with gr.Row():
with gr.Column():
min_null_prop_input = gr.Slider(min_null_prop, max_null_prop, min_null_prop, step=0.01, label="Min null proportion value")
with gr.Column():
max_null_prop_input = gr.Slider(min_null_prop, max_null_prop, max_null_prop, step=0.01, label="Max null proportion value")
gr.Markdown("- Minimum string length (in symbols) range")
with gr.Row():
with gr.Column():
min_min_input = gr.Slider(min_min, max_min, min_min, step=1, label="Min min value")
with gr.Column():
max_min_input = gr.Slider(min_min, max_min, max_min, step=1, label="Max min value")
gr.Markdown("- Maximum string length (in symbols) range")
with gr.Row():
with gr.Column():
min_max_input = gr.Slider(min_max, max_max, min_max, step=1, label="Min max value")
with gr.Column():
max_max_input = gr.Slider(min_max, max_max, max_max, step=1, label="Max max value")
gr.Markdown("- Mean string length (in symbols) range")
with gr.Row():
with gr.Column():
min_mean_input = gr.Slider(min_mean, max_mean, min_mean, step=1, label="Min mean value")
with gr.Column():
max_mean_input = gr.Slider(min_mean, max_mean, max_mean, step=1, label="Max mean value")
gr.Markdown("- Median string length (in symbols) range")
with gr.Row():
with gr.Column():
min_median_input = gr.Slider(min_median, max_median, min_median, step=1, label="Min median value")
with gr.Column():
max_median_input = gr.Slider(min_median, max_median, max_median, step=1, label="Max median value")
gr.Markdown("- Standard deviation of string length (in symbols) range")
with gr.Row():
with gr.Column():
min_std_input = gr.Slider(min_std, max_std, min_std, step=1, label="Min std value")
with gr.Column():
max_std_input = gr.Slider(min_std, max_std, max_std, step=1, label="Max std value")
sort_by = gr.Textbox(placeholder="num_examples:desc;std:asc;null_proportion:asc", label="Sort by (optional), in the following format: ':desc/asc;:desc/asc'")
column_name = gr.Textbox(placeholder="text", label="Column name, if you want to check only specific column (optional)")
include_partial = gr.Checkbox(False, label="Include partial datasets")
# max_rows = gr.Number(100, )
btn = gr.Button("Get datasets")
summary = gr.Markdown()
datasets = gr.DataFrame(datatype="markdown")
btn.click(filter_data, inputs=[
min_num_examples_input, max_num_examples_input,
min_null_count_input, max_null_count_input,
min_null_prop_input, max_null_prop_input,
min_min_input, max_min_input,
min_max_input, max_max_input,
min_mean_input, max_mean_input,
min_median_input, max_median_input,
min_std_input, max_std_input,
sort_by,
column_name,
include_partial,
], outputs=[datasets, summary])
demo.launch(debug=True)