File size: 4,556 Bytes
b1c2932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a079bf
 
 
 
 
 
 
 
 
 
 
 
 
b1c2932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a69359
d7f7631
5a69359
b1c2932
d7f7631
 
b1c2932
5a69359
b1c2932
ce3ad7e
b1c2932
 
 
590fdbb
5a69359
b1c2932
 
5a69359
b1c2932
 
 
5a69359
b1c2932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr

import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi
from huggingface_hub.utils._errors import RepositoryNotFoundError

from label_dicts import CAP_NUM_DICT, CAP_LABEL_NAMES

HF_TOKEN = os.environ["hf_read"]

languages = [
    "Danish",
    "Dutch",
    "English",
    "French",
    "German",
    "Hungarian",
    "Italian",
    "Polish",
    "Portuguese",
    "Spanish",
    "Czech",
    "Slovak",
    "Norwegian"
]

domains = {
    "media": "media",
    "social media": "social",
    "parliamentary speech": "parlspeech",
    "legislative documents": "legislative",
    "executive speech": "execspeech",
    "executive order": "execorder",
    "party programs": "party",
    "judiciary": "judiciary",
    "budget": "budget",
    "public opinion": "publicopinion",
    "local government agenda": "localgovernment"
}

def check_huggingface_path(checkpoint_path: str):
    try:
        hf_api = HfApi(token=HF_TOKEN)
        hf_api.model_info(checkpoint_path, token=HF_TOKEN)
        return True
    except RepositoryNotFoundError:
        return False

def build_huggingface_path(language: str, domain: str):
    base_path = "xlm-roberta-large"
    lang_domain_path = f"poltextlab/{base_path}-{language}-{domain}-cap-v3"
    lang_path = f"poltextlab/{base_path}-{language}-cap-v3"

    path_map = {
        "L": lang_path,
        "L-D": lang_domain_path,
        "X": lang_domain_path,
    }
    value = None

    try:
        lang_domain_table = pd.read_csv("language_domain_models.csv")
        lang_domain_table["language"] = lang_domain_table["language"].str.lower()
        lang_domain_table.columns = lang_domain_table.columns.str.lower()
        # get the row for the language and them get the value from the domain column
        row = lang_domain_table[(lang_domain_table["language"] == language)]
        tmp = row.get(domain)
        if not tmp.empty:
            value = tmp.iloc[0]
    except (AttributeError, FileNotFoundError):
        value = None

    if value and value in path_map:
        model_path = path_map[value]
        if check_huggingface_path(model_path):
            # if the model is available on Huggingface, return the path
            return model_path
        else:
            # if the model is not available on Huggingface, look for other models
            filtered_path_map = {k: v for k, v in path_map.items() if k != value}
            for k, v in filtered_path_map.items():
                if check_huggingface_path(v):
                    return v
    elif check_huggingface_path(lang_domain_path):
        return lang_domain_path
    elif check_huggingface_path(lang_path):
        return lang_path
    else:
        return "poltextlab/xlm-roberta-large-pooled-cap"

def predict(text, model_id, tokenizer_id):
    device = torch.device("cpu")
    gr.Info("Loading model")
    model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN)
    gr.Info("Loading tokenizer")
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
    #gr.Info("Mapping model to device")
    #model.to(device)

    gr.Info("Tokenizing")
    inputs = tokenizer(text,
                       max_length=4,
                       truncation=True,
                       padding="do_not_pad",
                       return_tensors="pt").to(device)

    gr.Info("model.eval()")
    model.eval()

    gr.Info("Prediction")
    with torch.no_grad():
        logits = model(**inputs).logits

    gr.Info("Softmax")
    probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
    output_pred = {f"[{CAP_NUM_DICT[i]}] {CAP_LABEL_NAMES[CAP_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
    output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
    return output_pred, output_info

def predict_cap(text, language, domain):
    domain = domains[domain]
    model_id = build_huggingface_path(language, domain)
    tokenizer_id = "xlm-roberta-large"
    return predict(text, model_id, tokenizer_id)

demo = gr.Interface(
    fn=predict_cap,
    inputs=[gr.Textbox(lines=6, label="Input"),
            gr.Dropdown(languages, label="Language"),
            gr.Dropdown(domains.keys(), label="Domain")],
    outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])