babel_machine / label_dicts.py
kovacsvi
up-to-date prod demo
4bba8df
CAP_NUM_DICT = {
0: 1,
1: 2,
2: 3,
3: 4,
4: 5,
5: 6,
6: 7,
7: 8,
8: 9,
9: 10,
10: 12,
11: 13,
12: 14,
13: 15,
14: 16,
15: 17,
16: 18,
17: 19,
18: 20,
19: 21,
20: 23,
21: 999,
22: 999, # had to do this because of some language-domain models (e.g. english media)
}
CAP_MIN_NUM_DICT = {
0: 100,
1: 101,
2: 103,
3: 104,
4: 105,
5: 107,
6: 108,
7: 110,
8: 199,
9: 200,
10: 201,
11: 202,
12: 204,
13: 205,
14: 206,
15: 207,
16: 208,
17: 209,
18: 299,
19: 300,
20: 301,
21: 302,
22: 321,
23: 322,
24: 323,
25: 324,
26: 325,
27: 331,
28: 332,
29: 333,
30: 334,
31: 335,
32: 341,
33: 342,
34: 398,
35: 399,
36: 400,
37: 401,
38: 402,
39: 403,
40: 404,
41: 405,
42: 408,
43: 498,
44: 499,
45: 500,
46: 501,
47: 502,
48: 503,
49: 504,
50: 505,
51: 506,
52: 529,
53: 599,
54: 600,
55: 601,
56: 602,
57: 603,
58: 604,
59: 606,
60: 607,
61: 698,
62: 699,
63: 700,
64: 701,
65: 703,
66: 704,
67: 705,
68: 707,
69: 708,
70: 709,
71: 711,
72: 798,
73: 799,
74: 800,
75: 801,
76: 802,
77: 803,
78: 805,
79: 806,
80: 807,
81: 898,
82: 899,
83: 900,
84: 1000,
85: 1001,
86: 1002,
87: 1003,
88: 1005,
89: 1007,
90: 1010,
91: 1098,
92: 1099,
93: 1200,
94: 1201,
95: 1202,
96: 1203,
97: 1204,
98: 1205,
99: 1206,
100: 1207,
101: 1208,
102: 1210,
103: 1211,
104: 1227,
105: 1299,
106: 1300,
107: 1302,
108: 1303,
109: 1304,
110: 1305,
111: 1308,
112: 1399,
113: 1400,
114: 1401,
115: 1403,
116: 1404,
117: 1405,
118: 1406,
119: 1407,
120: 1408,
121: 1409,
122: 1498,
123: 1499,
124: 1500,
125: 1501,
126: 1502,
127: 1504,
128: 1505,
129: 1507,
130: 1520,
131: 1521,
132: 1522,
133: 1523,
134: 1524,
135: 1525,
136: 1526,
137: 1598,
138: 1599,
139: 1600,
140: 1602,
141: 1603,
142: 1604,
143: 1605,
144: 1606,
145: 1608,
146: 1610,
147: 1611,
148: 1612,
149: 1614,
150: 1615,
151: 1616,
152: 1617,
153: 1619,
154: 1620,
155: 1698,
156: 1699,
157: 1700,
158: 1701,
159: 1704,
160: 1705,
161: 1706,
162: 1707,
163: 1708,
164: 1709,
165: 1798,
166: 1799,
167: 1800,
168: 1802,
169: 1803,
170: 1804,
171: 1806,
172: 1807,
173: 1808,
174: 1899,
175: 1900,
176: 1901,
177: 1902,
178: 1905,
179: 1906,
180: 1910,
181: 1921,
182: 1925,
183: 1926,
184: 1927,
185: 1929,
186: 1999,
187: 2000,
188: 2001,
189: 2002,
190: 2003,
191: 2004,
192: 2005,
193: 2006,
194: 2007,
195: 2008,
196: 2009,
197: 2010,
198: 2011,
199: 2012,
200: 2013,
201: 2014,
202: 2015,
203: 2030,
204: 2099,
205: 2100,
206: 2101,
207: 2102,
208: 2103,
209: 2104
}
CAP_LABEL_NAMES = {
1: "Macroeconomics",
2: "Civil Rights",
3: "Health",
4: "Agriculture",
5: "Labor",
6: "Education",
7: "Environment",
8: "Energy",
9: "Immigration",
10: "Transportation",
12: "Law and Crime",
13: "Social Welfare",
14: "Housing",
15: "Domestic Commerce",
16: "Defense",
17: "Technology",
18: "Foreign Trade",
19: "International Affairs",
20: "Government Operations",
21: "Public Lands",
23: "Culture",
999: "No Policy Content"
}
CAP_MIN_LABEL_NAMES = {
# 1. Macroeconomics
100: "General",
101: "Interest Rates",
103: "Unemployment Rate",
104: "Monetary Policy",
105: "National Budget",
107: "Tax Code",
108: "Industrial Policy",
110: "Price Control",
199: "Other",
# 2. Civil Rights
200: "General",
201: "Minority Discrimination",
202: "Gender Discrimination",
204: "Age Discrimination",
205: "Handicap Discrimination",
206: "Voting Rights",
207: "Freedom of Speech",
208: "Right to Privacy",
209: "Anti-Government",
299: "Other",
# 3. Health
300: "General",
301: "Health Care Reform",
302: "Insurance",
321: "Drug Industry",
322: "Medical Facilities",
323: "Insurance Providers",
324: "Medical Liability",
325: "Manpower",
331: "Disease Prevention",
332: "Infants and Children",
333: "Mental Health",
334: "Long-term Care",
335: "Drug Coverage and Cost",
341: "Tobacco Abuse",
342: "Drug and Alcohol Abuse",
398: "R&D",
399: "Other",
# 4. Agriculture
400: "General",
401: "Trade",
402: "Subsidies to Farmers",
403: "Food Inspection & Safety",
404: "Food Marketing & Promotion",
405: "Animal and Crop Disease",
408: "Fisheries & Fishing",
498: "R&D",
499: "Other",
# 5. Labor
500: "General",
501: "Worker Safety",
502: "Employment Training",
503: "Employee Benefits",
504: "Labor Unions",
505: "Fair Labor Standards",
506: "Youth Employment",
529: "Migrant and Seasonal",
599: "Other",
# 6. Education
600: "General",
601: "Higher",
602: "Elementary & Secondary",
603: "Underprivileged",
604: "Vocational",
606: "Special",
607: "Excellence",
698: "R&D",
699: "Other",
# 7. Environment
700: "General",
701: "Drinking Water",
703: "Waste Disposal",
704: "Hazardous Waste",
705: "Air Pollution",
707: "Recycling",
708: "Indoor Hazards",
709: "Species & Forest",
711: "Land and Water Conservation",
798: "R&D",
799: "Other",
# 8. Energy
800: "General",
801: "Nuclear",
802: "Electricity",
803: "Natural Gas & Oil",
805: "Coal",
806: "Alternative & Renewable",
807: "Conservation",
898: "R&D",
899: "Other",
# 9. Immigration
900: "Immigration",
# 10. Transportation
1000: "General",
1001: "Mass",
1002: "Highways",
1003: "Air Travel",
1005: "Railroad Travel",
1007: "Maritime",
1010: "Infrastructure",
1098: "R&D",
1099: "Other",
# 12. Law and Crime
1200: "General",
1201: "Agencies",
1202: "White Collar Crime",
1203: "Illegal Drugs",
1204: "Court Administration",
1205: "Prisons",
1206: "Juvenile Crime",
1207: "Child Abuse",
1208: "Family Issues",
1210: "Criminal & Civil Code",
1211: "Crime Control",
1227: "Police",
1299: "Other",
# 13. Social Welfare
1300: "General",
1302: "Low-Income Assistance",
1303: "Elderly Assistance",
1304: "Disabled Assistance",
1305: "Volunteer Associations",
1308: "Child Care",
1399: "Other",
# 14. Housing
1400: "General",
1401: "Community Development",
1403: "Urban Development",
1404: "Rural Housing",
1405: "Rural Development",
1406: "Low-Income Assistance",
1407: "Veterans",
1408: "Elderly",
1409: "Homeless",
1498: "R&D",
1499: "Other",
# 15. Domestic Commerce
1500: "General",
1501: "Banking",
1502: "Securities & Commodities",
1504: "Consumer Finance",
1505: "Insurance Regulation",
1507: "Bankruptcy",
1520: "Corporate Management",
1521: "Small Businesses",
1522: "Copyrights and Patents",
1523: "Disaster Relief",
1524: "Tourism",
1525: "Consumer Safety",
1526: "Sports Regulation",
1598: "R&D",
1599: "Other",
# 16. Defense
1600: "General",
1602: "Alliances",
1603: "Intelligence",
1604: "Readiness",
1605: "Nuclear Arms",
1606: "Military Aid",
1608: "Personnel Issues",
1610: "Procurement",
1611: "Installations & Land",
1612: "Reserve Forces",
1614: "Hazardous Waste",
1615: "Civil",
1616: "Civilian Personnel",
1617: "Contractors",
1619: "Foreign Operations",
1620: "Claims against Military",
1698: "R&D",
1699: "Other",
# 17. Technology
1700: "General",
1701: "Space",
1704: "Commercial Use of Space",
1705: "Science Transfer",
1706: "Telecommunications",
1707: "Broadcast",
1708: "Weather Forecasting",
1709: "Computers",
1798: "R&D",
1799: "Other",
# 18. Foreign Trade
1800: "General",
1802: "Trade Agreements",
1803: "Exports",
1804: "Private Investments",
1806: "Competitiveness",
1807: "Tariff & Imports",
1808: "Exchange Rates",
1899: "Other",
# 19. International Affairs
1900: "General",
1901: "Foreign Aid",
1902: "Resources Exploitation",
1905: "Developing Countries",
1906: "International Finance",
1910: "Western Europe",
1921: "Specific Country",
1925: "Human Rights",
1926: "Organizations",
1927: "Terrorism",
1929: "Diplomats",
1999: "Other",
# 20. Government Operations
2000: "General",
2001: "Intergovernmental Relations",
2002: "Bureaucracy",
2003: "Postal Service",
2004: "Employees",
2005: "Appointments",
2006: "Currency",
2007: "Procurement & Contractors",
2008: "Property Management",
2009: "Tax Administration",
2010: "Scandals",
2011: "Branch Relations",
2012: "Political Campaigns",
2013: "Census & Statistics",
2014: "Capital City",
2015: "Claims against the government",
2030: "National Holidays",
2099: "Other",
# 21. Public Lands
2100: "General",
2101: "National Parks",
2102: "Indigenous Affairs",
2103: "Public Lands",
2104: "Water Resources",
2105: "Dependencies & Territories",
2199: "Other",
# 23. Culture
2300: "General",
# NPC
9999: "No Policy Content",
}
MANIFESTO_LABEL_NAMES = {
0: "No Policy Goal",
999: "No Policy Goal",
101: "Foreign Special Relationships: Positive",
102: "Foreign Special Relationships: Negative",
103: "Anti-Imperialism",
104: "Military: Positive",
105: "Military: Negative",
106: "Peace",
107: "Internationalism: Positive",
108: "European Community/Union: Positive",
109: "Internationalism: Negative",
110: "European Community/Union: Negative",
201: "Freedom and Human Rights",
202: "Democracy",
203: "Constitutionalism: Positive",
204: "Constitutionalism: Negative",
301: "Federalism",
302: "Centralisation",
303: "Governmental and Administrative Efficiency",
304: "Political Corruption",
305: "Political Authority",
401: "Free Market Economy",
402: "Incentives",
403: "Market Regulation",
404: "Economic Planning",
405: "Corporatism/Mixed Economy",
406: "Protectionism: Positive",
407: "Protectionism: Negative",
408: "Economic Goals",
409: "Keynesian Demand Management",
410: "Economic Growth: Positive",
411: "Technology and Infrastructure",
412: "Controlled Economy",
413: "Nationalisation",
414: "Economic Orthodoxy",
415: "Marxist Analysis: Positive",
416: "Anti-Growth Economy: Positive",
501: "Environmental Protection: Positive",
502: "Culture: Positive",
503: "Equality: Positive",
504: "Welfare State Expansion",
505: "Welfare State Limitation",
506: "Education Expansion",
507: "Education Limitation",
601: "National Way of Life: Positive",
602: "National Way of Life: Negative",
603: "Traditional Morality: Positive",
604: "Traditional Morality: Negative",
605: "Law and Order: Positive",
606: "Civic Mindedness: Positive",
607: "Multiculturalism: Positive",
608: "Multiculturalism: Negative",
701: "Labour Groups: Positive",
702: "Labour Groups: Negative",
703: "Agriculture and Farmers: Positive",
704: "Middle Class and Professional Groups",
705: "Underprivileged Minority Groups",
706: "Non-economic Demographic Groups"
}
ILLFRAMES_MIGRATION_LABEL_NAMES = {
901: "Culture Under Attack",
902: "Economic Burden",
903: "Illegals and Fraudsters",
904: "Extradition Necessity",
905: "Nation tate Should Decide",
906: "Administrative Burden",
907: "General System Failure",
908: "Security Threat",
909: "Criminals",
910: "Welfare State Overload",
999: "None of Them",
}
ILLFRAMES_COVID_LABEL_NAMES = {
310: "Skepticism",
311: "Great Reset and Elite Control",
312: "Undermining the Economy",
313: "Medical Choice",
314: "Media Fabrication",
315: "Threatening Way of Life",
399: "None of Them",
}
ILLFRAMES_WAR_LABEL_NAMES = {
101: 'Identity and Cultural Threat',
102: 'Economic Fallout/Domestic Welfare Neglected',
103: 'Violation of Russian Sovereignty/Western geopolitical meddling',
104: 'Illegitimate and corrupt Ukraine leadership',
105: 'Ukrainians and Ukraine are a military threat and agressive war-mongerer that threaten EU stability and security',
107: 'Western Propaganda and Civilian Suffering',
108: 'Historical Betrayal of Russia',
109: 'Ukraine/Nazi Allegation',
110: "None of Them"
}
ONTOLISST_LABEL_NAMES = {
0: 'Demographics',
1: 'Housing and local environment (Housing and environment)',
2: 'Physical health',
3: 'Mental health and mental processes',
4: 'Healthcare',
5: 'Health behaviour (Health and lifestyle)',
6: 'Family and social networks',
7: 'Education',
8: 'Employment and income (Employment and pensions)',
9: 'Expectation, attitudes and beliefs (Attitudes and beliefs)',
10: 'Child development',
11: 'Life events',
12: 'Omics',
13: 'Pregnancy',
14: 'Administration',
15: 'COVID19'
}
EMOTION9_LABEL_NAMES = {
0: "Anger",
1: "Fear",
2: "Disgust",
3: "Sadness",
4: "Joy",
5: "Enthusiasm",
6: "Hope",
7: "Pride",
8: "None of Them",
}