Spaces:
Running
Running
kovacsvi
commited on
Commit
·
8869f68
1
Parent(s):
3149885
removed html slop
Browse files- interfaces/cap_minor.py +36 -70
interfaces/cap_minor.py
CHANGED
@@ -8,19 +8,17 @@ from transformers import AutoModelForSequenceClassification
|
|
8 |
from transformers import AutoTokenizer
|
9 |
from huggingface_hub import HfApi
|
10 |
|
11 |
-
from
|
12 |
|
13 |
-
from
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
"""Return the first n items of the iterable as a list."""
|
18 |
-
return list(islice(iterable, n))
|
19 |
|
20 |
-
def score_to_color(prob):
|
21 |
-
red = int(255 * (1 - prob))
|
22 |
-
green = int(255 * prob)
|
23 |
-
return f"rgb({red},{green},0)"
|
24 |
|
25 |
HF_TOKEN = os.environ["hf_read"]
|
26 |
|
@@ -39,20 +37,17 @@ domains = {
|
|
39 |
"judiciary": "judiciary",
|
40 |
"budget": "budget",
|
41 |
"public opinion": "publicopinion",
|
42 |
-
"local government agenda": "localgovernment"
|
43 |
}
|
44 |
|
45 |
-
def convert_minor_to_major(minor_topic):
|
46 |
-
if minor_topic == 999:
|
47 |
-
major_code = 999
|
48 |
-
else:
|
49 |
-
major_code = str(minor_topic)[:-2]
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
return label
|
55 |
-
|
56 |
|
57 |
def check_huggingface_path(checkpoint_path: str):
|
58 |
try:
|
@@ -62,11 +57,13 @@ def check_huggingface_path(checkpoint_path: str):
|
|
62 |
except:
|
63 |
return False
|
64 |
|
|
|
65 |
def build_huggingface_path(language: str, domain: str):
|
66 |
if domain in ["social"]:
|
67 |
return "poltextlab/xlm-roberta-large-twitter-cap-minor"
|
68 |
return "poltextlab/xlm-roberta-large-pooled-cap-minor-v3"
|
69 |
|
|
|
70 |
def predict(text, model_id, tokenizer_id):
|
71 |
device = torch.device("cpu")
|
72 |
|
@@ -80,74 +77,43 @@ def predict(text, model_id, tokenizer_id):
|
|
80 |
|
81 |
# Tokenize input
|
82 |
inputs = tokenizer(
|
83 |
-
text,
|
84 |
-
max_length=64,
|
85 |
-
truncation=True,
|
86 |
-
padding=True,
|
87 |
-
return_tensors="pt"
|
88 |
)
|
89 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
90 |
|
91 |
with torch.no_grad():
|
92 |
output = model(inputs["input_ids"], inputs["attention_mask"])
|
93 |
-
print(output)
|
94 |
logits = output["logits"]
|
95 |
-
|
96 |
release_model(model, model_id)
|
97 |
|
98 |
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
output_pred = dict(sorted(output_pred.items(), key=lambda item: item[1], reverse=True))
|
103 |
-
first_n_items = take(5, output_pred.items())
|
104 |
-
|
105 |
-
html = ""
|
106 |
-
html += '<div style="background-color: white">'
|
107 |
-
first = True
|
108 |
-
for label, prob in first_n_items:
|
109 |
-
bar_color = "#e0d890" if first else "#ccc"
|
110 |
-
text_color = "black"
|
111 |
-
bar_width = int(prob * 100)
|
112 |
-
|
113 |
-
bar_color = score_to_color(prob)
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
if first:
|
118 |
-
html += f"""
|
119 |
-
<div style="text-align: center; font-weight: bold; font-size: 27px; margin-bottom: 10px; margin-left: 10px; margin-right: 10px;">
|
120 |
-
<span style="color: {text_color};">{label}</span>
|
121 |
-
</div>"""
|
122 |
-
|
123 |
-
html += f"""
|
124 |
-
<div style="height: 4px; background-color: green; width: {bar_width}%; margin-bottom: 8px;"></div>
|
125 |
-
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 4px;">
|
126 |
-
<span style="color: {text_color};">{label} — {int(prob * 100)}%</span>
|
127 |
-
</div>
|
128 |
-
"""
|
129 |
-
first = False
|
130 |
-
|
131 |
-
|
132 |
-
html += '</div>'
|
133 |
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
|
134 |
-
return
|
|
|
135 |
|
136 |
def predict_cap(text, language, domain):
|
137 |
domain = domains[domain]
|
138 |
model_id = build_huggingface_path(language, domain)
|
139 |
tokenizer_id = "xlm-roberta-large"
|
140 |
-
|
141 |
if is_disk_full():
|
142 |
-
os.system(
|
143 |
-
os.system(
|
144 |
-
|
145 |
return predict(text, model_id, tokenizer_id)
|
146 |
|
|
|
147 |
demo = gr.Interface(
|
148 |
title="CAP Minor Topics Babel Demo",
|
149 |
fn=predict_cap,
|
150 |
-
inputs=[
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
8 |
from transformers import AutoTokenizer
|
9 |
from huggingface_hub import HfApi
|
10 |
|
11 |
+
from collections import defaultdict
|
12 |
|
13 |
+
from label_dicts import (
|
14 |
+
CAP_NUM_DICT,
|
15 |
+
CAP_LABEL_NAMES,
|
16 |
+
CAP_MIN_NUM_DICT,
|
17 |
+
CAP_MIN_LABEL_NAMES,
|
18 |
+
)
|
19 |
|
20 |
+
from .utils import is_disk_full, release_model
|
|
|
|
|
21 |
|
|
|
|
|
|
|
|
|
22 |
|
23 |
HF_TOKEN = os.environ["hf_read"]
|
24 |
|
|
|
37 |
"judiciary": "judiciary",
|
38 |
"budget": "budget",
|
39 |
"public opinion": "publicopinion",
|
40 |
+
"local government agenda": "localgovernment",
|
41 |
}
|
42 |
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
def get_label_name(idx):
|
45 |
+
minor_code = CAP_MIN_NUM_DICT[idx]
|
46 |
+
minor_label_name = CAP_MIN_LABEL_NAMES[minor_code]
|
47 |
+
major_code = minor_code // 100 if minor_code not in [99, 999, 9999] else 999
|
48 |
+
major_label_name = CAP_LABEL_NAMES[major_code]
|
49 |
+
return f"[{major_code}] {major_label_name} [{minor_code}] {minor_label_name}"
|
50 |
|
|
|
|
|
51 |
|
52 |
def check_huggingface_path(checkpoint_path: str):
|
53 |
try:
|
|
|
57 |
except:
|
58 |
return False
|
59 |
|
60 |
+
|
61 |
def build_huggingface_path(language: str, domain: str):
|
62 |
if domain in ["social"]:
|
63 |
return "poltextlab/xlm-roberta-large-twitter-cap-minor"
|
64 |
return "poltextlab/xlm-roberta-large-pooled-cap-minor-v3"
|
65 |
|
66 |
+
|
67 |
def predict(text, model_id, tokenizer_id):
|
68 |
device = torch.device("cpu")
|
69 |
|
|
|
77 |
|
78 |
# Tokenize input
|
79 |
inputs = tokenizer(
|
80 |
+
text, max_length=64, truncation=True, padding=True, return_tensors="pt"
|
|
|
|
|
|
|
|
|
81 |
)
|
82 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
83 |
|
84 |
with torch.no_grad():
|
85 |
output = model(inputs["input_ids"], inputs["attention_mask"])
|
86 |
+
print(output) # debug
|
87 |
logits = output["logits"]
|
88 |
+
|
89 |
release_model(model, model_id)
|
90 |
|
91 |
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
|
92 |
+
|
93 |
+
output_pred = {get_label_name(i): probs[i] for i in np.argsort(probs)[::-1]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
|
95 |
+
return output_pred, output_info
|
96 |
+
|
97 |
|
98 |
def predict_cap(text, language, domain):
|
99 |
domain = domains[domain]
|
100 |
model_id = build_huggingface_path(language, domain)
|
101 |
tokenizer_id = "xlm-roberta-large"
|
102 |
+
|
103 |
if is_disk_full():
|
104 |
+
os.system("rm -rf /data/models*")
|
105 |
+
os.system("rm -r ~/.cache/huggingface/hub")
|
106 |
+
|
107 |
return predict(text, model_id, tokenizer_id)
|
108 |
|
109 |
+
|
110 |
demo = gr.Interface(
|
111 |
title="CAP Minor Topics Babel Demo",
|
112 |
fn=predict_cap,
|
113 |
+
inputs=[
|
114 |
+
gr.Textbox(lines=6, label="Input"),
|
115 |
+
gr.Dropdown(languages, label="Language", value=languages[0]),
|
116 |
+
gr.Dropdown(domains.keys(), label="Domain", value=list(domains.keys())[0]),
|
117 |
+
],
|
118 |
+
outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()],
|
119 |
+
)
|