vickeee465 commited on
Commit
c554973
·
1 Parent(s): 027da70
Files changed (2) hide show
  1. interfaces/cap.py +1 -1
  2. utils.py +8 -1
interfaces/cap.py CHANGED
@@ -104,7 +104,7 @@ def predict(text, model_id, tokenizer_id):
104
 
105
  gr.Info("Tokenizing")
106
  inputs = tokenizer(text,
107
- max_length=4,
108
  truncation=True,
109
  padding="do_not_pad",
110
  return_tensors="pt").to(device)
 
104
 
105
  gr.Info("Tokenizing")
106
  inputs = tokenizer(text,
107
+ max_length=256,
108
  truncation=True,
109
  padding="do_not_pad",
110
  return_tensors="pt").to(device)
utils.py CHANGED
@@ -7,15 +7,22 @@ from interfaces.manifesto import languages as languages_manifesto
7
  from interfaces.manifesto import languages as languages_manifesto
8
  """
9
 
 
 
 
10
  from interfaces.cap import build_huggingface_path as hf_cap_path
11
  from interfaces.manifesto import build_huggingface_path as hf_manifesto_path
12
  from interfaces.sentiment import build_huggingface_path as hf_sentiment_path
13
  from interfaces.emotion import build_huggingface_path as hf_emotion_path
14
 
15
-
16
  HF_TOKEN = os.environ["hf_read"]
17
 
 
18
  models = [hf_manifesto_path(""), hf_sentiment_path(""), hf_emotion_path("")]
 
 
 
 
19
  tokenizers = ["xlm-roberta-large"]
20
 
21
  def download_hf_models():
 
7
  from interfaces.manifesto import languages as languages_manifesto
8
  """
9
 
10
+ from interfaces.cap import languages as languages_cap
11
+ from interfaces.cap import domains as domains_cap
12
+
13
  from interfaces.cap import build_huggingface_path as hf_cap_path
14
  from interfaces.manifesto import build_huggingface_path as hf_manifesto_path
15
  from interfaces.sentiment import build_huggingface_path as hf_sentiment_path
16
  from interfaces.emotion import build_huggingface_path as hf_emotion_path
17
 
 
18
  HF_TOKEN = os.environ["hf_read"]
19
 
20
+ # should be a temporary solution
21
  models = [hf_manifesto_path(""), hf_sentiment_path(""), hf_emotion_path("")]
22
+ for languages in languages_cap:
23
+ for domains in domains_cap:
24
+ models.append(hf_cap_path(language, domain))
25
+
26
  tokenizers = ["xlm-roberta-large"]
27
 
28
  def download_hf_models():