import os from transformers import AutoTokenizer, AutoModelForSequenceClassification """ from interfaces.manifesto import languages as languages_manifesto from interfaces.manifesto import languages as languages_manifesto from interfaces.manifesto import languages as languages_manifesto """ from interfaces.cap import build_huggingface_path as hf_cap_path from interfaces.manifesto import build_huggingface_path as hf_manifesto_path from interfaces.sentiment import build_huggingface_path as hf_sentiment_path from interfaces.emotion import build_huggingface_path as hf_emotion_path HF_TOKEN = os.environ["hf_read"] models = [hf_manifesto_path(""), hf_sentiment_path(""), hf_emotion_path("")] tokenizers = ["xlm-roberta-large"] def download_hf_models(): for model_id in models: model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN) del model for tokenizer_id in tokenizers: tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) del tokenizer