import gradio as gr import os import torch import numpy as np import pandas as pd from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer from huggingface_hub import HfApi from collections import defaultdict from label_dicts import ( CAP_NUM_DICT, CAP_LABEL_NAMES, CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES, ) from .utils import is_disk_full, release_model HF_TOKEN = os.environ["hf_read"] languages = [ "Multilingual", ] domains = { "media": "media", "social media": "social", "parliamentary speech": "parlspeech", "legislative documents": "legislative", "executive speech": "execspeech", "executive order": "execorder", "party programs": "party", "judiciary": "judiciary", "budget": "budget", "public opinion": "publicopinion", "local government agenda": "localgovernment", } def get_label_name(idx): minor_code = CAP_MIN_NUM_DICT[idx] minor_label_name = CAP_MIN_LABEL_NAMES[minor_code] major_code = minor_code // 100 if minor_code not in [99, 999, 9999] else 999 major_label_name = CAP_LABEL_NAMES[major_code] return f"[{major_code}] {major_label_name} [{minor_code}] {minor_label_name}" def check_huggingface_path(checkpoint_path: str): try: hf_api = HfApi(token=HF_TOKEN) hf_api.model_info(checkpoint_path, token=HF_TOKEN) return True except: return False def build_huggingface_path(language: str, domain: str): if domain in ["social"]: return "poltextlab/xlm-roberta-large-twitter-cap-minor" return "poltextlab/xlm-roberta-large-pooled-cap-minor-v3" def predict(text, model_id, tokenizer_id): device = torch.device("cpu") # Load JIT-traced model jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt" model = torch.jit.load(jit_model_path).to(device) model.eval() # Load tokenizer (still regular HF) tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) # Tokenize input inputs = tokenizer( text, max_length=64, truncation=True, padding=True, return_tensors="pt" ) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): output = model(inputs["input_ids"], inputs["attention_mask"]) print(output) # debug logits = output["logits"] release_model(model, model_id) probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() output_pred = {get_label_name(i): probs[i] for i in np.argsort(probs)[::-1]} output_info = f'
Prediction was made using the {model_id} model.
' return output_pred, output_info def predict_cap(text, language, domain): domain = domains[domain] model_id = build_huggingface_path(language, domain) tokenizer_id = "xlm-roberta-large" if is_disk_full(): os.system("rm -rf /data/models*") os.system("rm -r ~/.cache/huggingface/hub") return predict(text, model_id, tokenizer_id) demo = gr.Interface( title="CAP Minor Topics Babel Demo", fn=predict_cap, inputs=[ gr.Textbox(lines=6, label="Input"), gr.Dropdown(languages, label="Language", value=languages[0]), gr.Dropdown(domains.keys(), label="Domain", value=list(domains.keys())[0]), ], outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()], )