import gradio as gr import os import torch import numpy as np import pandas as pd from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer from huggingface_hub import HfApi from label_dicts import CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES, CAP_LABEL_NAMES from .utils import is_disk_full from itertools import islice def take(n, iterable): """Return the first n items of the iterable as a list.""" return list(islice(iterable, n)) def score_to_color(prob): red = int(255 * (1 - prob)) green = int(255 * prob) return f"rgb({red},{green},0)" HF_TOKEN = os.environ["hf_read"] languages = [ "Multilingual", ] domains = { "media": "media", "social media": "social", "parliamentary speech": "parlspeech", "legislative documents": "legislative", "executive speech": "execspeech", "executive order": "execorder", "party programs": "party", "judiciary": "judiciary", "budget": "budget", "public opinion": "publicopinion", "local government agenda": "localgovernment" } def convert_minor_to_major(minor_topic): if minor_topic == 999: major_code = 999 else: major_code = str(minor_topic)[:-2] label = CAP_LABEL_NAMES[int(major_code)] return label def check_huggingface_path(checkpoint_path: str): try: hf_api = HfApi(token=HF_TOKEN) hf_api.model_info(checkpoint_path, token=HF_TOKEN) return True except: return False def build_huggingface_path(language: str, domain: str): return "poltextlab/xlm-roberta-large-pooled-cap-minor-v3" def predict(text, model_id, tokenizer_id): device = torch.device("cpu") model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN) tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device) model.eval() with torch.no_grad(): logits = model(**inputs).logits probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() output_pred = {f"[{'999' if str(CAP_MIN_NUM_DICT[i]) == '999' else str(CAP_MIN_NUM_DICT[i])[:-2]}]{convert_minor_to_major(CAP_MIN_NUM_DICT[i])} [{CAP_MIN_NUM_DICT[i]}]{CAP_MIN_LABEL_NAMES[CAP_MIN_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]} output_pred = dict(sorted(output_pred.items(), key=lambda item: item[1], reverse=True)) first_n_items = take(5, output_pred.items()) html = "" html += '
' first = True for label, prob in first_n_items: bar_color = "#e0d890" if first else "#ccc" text_color = "black" bar_width = int(prob * 100) bar_color = score_to_color(prob) if first: html += f"""
{label}
""" html += f"""
{label} — {int(prob * 100)}%
""" first = False html += '
' output_info = f'

Prediction was made using the {model_id} model.

' return html, output_info def predict_cap(text, language, domain): domain = domains[domain] model_id = build_huggingface_path(language, domain) tokenizer_id = "xlm-roberta-large" if is_disk_full(): os.system('rm -rf /data/models*') os.system('rm -r ~/.cache/huggingface/hub') return predict(text, model_id, tokenizer_id) demo = gr.Interface( title="CAP Minor Topics Babel Demo", fn=predict_cap, inputs=[gr.Textbox(lines=6, label="Input"), gr.Dropdown(languages, label="Language"), gr.Dropdown(domains.keys(), label="Domain")], outputs=[gr.HTML(label="Output"), gr.Markdown()])