File size: 4,076 Bytes
b1c2932
 
 
 
 
 
 
 
 
 
 
 
f1168c0
219ed3b
b1c2932
 
 
7a079bf
a6c2ca7
b1c2932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e7a4a4
b1c2932
 
 
8dc5af0
b1c2932
38e644a
65e8066
3d40b96
 
38e644a
 
 
b1c2932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6c2ca7
 
 
 
 
 
 
b1c2932
 
 
 
 
182d6c8
b1c2932
 
 
84c21a9
b1c2932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219ed3b
466052e
 
 
219ed3b
b1c2932
 
 
f7e1e22
b1c2932
 
 
 
f7e1e22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import gradio as gr

import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi

from label_dicts import CAP_NUM_DICT, CAP_LABEL_NAMES

from .utils import is_disk_full

HF_TOKEN = os.environ["hf_read"]

languages = [
    "English",
    "Multilingual"
]

domains = {
    "media": "media",
    "social media": "social",
    "parliamentary speech": "parlspeech",
    "legislative documents": "legislative",
    "executive speech": "execspeech",
    "executive order": "execorder",
    "party programs": "party",
    "judiciary": "judiciary",
    "budget": "budget",
    "public opinion": "publicopinion",
    "local government agenda": "localgovernment"
}

def check_huggingface_path(checkpoint_path: str):
    try:
        hf_api = HfApi(token=HF_TOKEN)
        hf_api.model_info(checkpoint_path, token=HF_TOKEN)
        return True
    except:
        return False

def build_huggingface_path(language: str, domain: str):
    language = language.lower()
    base_path = "xlm-roberta-large"

    if language == "english" and (domain == "media" or domain == "legislative"):
        lang_domain_path = f"poltextlab/{base_path}-{language}-{domain}-cap-v4"
        return lang_domain_path
    else:
        lang_domain_path = f"poltextlab/{base_path}-{language}-{domain}-cap-v3"
        
    lang_path = f"poltextlab/{base_path}-{language}-cap-v3"

    path_map = {
        "L": lang_path,
        "L-D": lang_domain_path,
        "X": lang_domain_path,
    }
    value = None

    try:
        lang_domain_table = pd.read_csv("language_domain_models.csv")
        lang_domain_table["language"] = lang_domain_table["language"].str.lower()
        lang_domain_table.columns = lang_domain_table.columns.str.lower()
        # get the row for the language and them get the value from the domain column
        row = lang_domain_table[(lang_domain_table["language"] == language)]
        tmp = row.get(domain)
        if not tmp.empty:
            value = tmp.iloc[0]
    except (AttributeError, FileNotFoundError):
        value = None

    if language == 'english':
        model_path = lang_path
    else:
        model_path = "poltextlab/xlm-roberta-large-pooled-cap"

    if check_huggingface_path(model_path):
        return model_path
    else:
        return "poltextlab/xlm-roberta-large-pooled-cap"

def predict(text, model_id, tokenizer_id):
    device = torch.device("cpu")
    model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN)
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)

    inputs = tokenizer(text,
                       max_length=256,
                       truncation=True,
                       padding="do_not_pad",
                       return_tensors="pt").to(device)
    model.eval()

    with torch.no_grad():
        logits = model(**inputs).logits

    probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
    output_pred = {f"[{CAP_NUM_DICT[i]}] {CAP_LABEL_NAMES[CAP_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
    output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
    return output_pred, output_info

def predict_cap(text, language, domain):
    domain = domains[domain]
    model_id = build_huggingface_path(language, domain)
    tokenizer_id = "xlm-roberta-large"
    
    if is_disk_full():
        os.system('rm -rf /data/models*')
        os.system('rm -r ~/.cache/huggingface/hub')
        
    return predict(text, model_id, tokenizer_id)

demo = gr.Interface(
    title="CAP Babel Demo",
    fn=predict_cap,
    inputs=[gr.Textbox(lines=6, label="Input"),
            gr.Dropdown(languages, label="Language"),
            gr.Dropdown(domains.keys(), label="Domain")],
    outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])