babelmachine / interfaces /sentiment.py
poltextlab's picture
first upload
b1c2932 verified
raw
history blame
1.76 kB
import gradio as gr
import os
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi
from label_dicts import MANIFESTO_LABEL_NAMES
HF_TOKEN = os.environ["hf_read"]
languages = [
"czech", "english", "french", "german", "hungarian", "italian"
]
def build_huggingface_path(language: str):
return "poltextlab/xlm-roberta-large-pooled-sentiment"
def predict(text, model_id, tokenizer_id):
device = torch.device("cpu")
model = AutoModelForSequenceClassification.from_pretrained(model_id, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
model.to(device)
inputs = tokenizer(text,
max_length=512,
truncation=True,
padding="do_not_pad",
return_tensors="pt").to(device)
model.eval()
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
output_pred = {model.config.id2label[i]: probs[i] for i in np.argsort(probs)[::-1]}
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
return output_pred, output_info
def predict_cap(text, language):
model_id = build_huggingface_path(language)
tokenizer_id = "xlm-roberta-large"
return predict(text, model_id, tokenizer_id)
demo = gr.Interface(
fn=predict_cap,
inputs=[gr.Textbox(lines=6, label="Input"),
gr.Dropdown(languages, label="Language")],
outputs=[gr.Label(num_top_classes=3, label="Output"), gr.Markdown()])