kovacsvi commited on
Commit
7924bcb
·
1 Parent(s): 32f8ddd

custom css

Browse files
Files changed (2) hide show
  1. app.py +7 -6
  2. utils.py +4 -0
app.py CHANGED
@@ -13,6 +13,7 @@ import matplotlib.colors as mcolors
13
  import plotly.express as px
14
  import seaborn as sns
15
  from tqdm import tqdm
 
16
 
17
  PATH = '/data/' # at least 150GB storage needs to be attached
18
  os.environ['TRANSFORMERS_CACHE'] = PATH
@@ -207,13 +208,13 @@ def predict_wrapper(text, language):
207
  return results, figure, piechart, heatmap, output_info
208
 
209
 
210
- with gr.Blocks() as demo:
211
  placeholder = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua."
212
  introduction = """This platform is designed to detect and visualize emotions in text. The model behind it operates using a 6-label codebook, including the following labels: ‘Anger’, ‘Fear’, ‘Disgust’, ‘Sadness’, ‘Joy’, and ‘None of Them’.
213
  The model is optimized for sentence-level analysis, and make predictions in the following languages: Czech, English, French, German, Hungarian, Polish, and Slovak.
214
  The text you enter in the input box is automatically divided into sentences, and the analysis is performed on each sentence. Depending on the length of the text, this process may take a few seconds, but for longer texts, it can take up to 2-3 minutes.
215
  """
216
- gr.Markdown(introduction)
217
  with gr.Row():
218
  with gr.Column():
219
  input_text = gr.Textbox(lines=6, label="Input", placeholder="Enter your text here...")
@@ -227,13 +228,13 @@ with gr.Blocks() as demo:
227
  with gr.Column(scale=7):
228
  piechart = gr.Plot()
229
  with gr.Column(scale=3):
230
- gr.Markdown("The following pie chart shows the average probabilities of all emotions associated with the entire text.")
231
 
232
  with gr.Row():
233
  with gr.Column(scale=7):
234
  plot = gr.Plot()
235
  with gr.Column(scale=3):
236
- gr.Markdown("The bar plot represents the relative frequency of emotion predictions at the sentence level.")
237
 
238
  with gr.Row():
239
  with gr.Column(scale=7):
@@ -243,13 +244,13 @@ with gr.Blocks() as demo:
243
  wrap=True # important
244
  )
245
  with gr.Column(scale=3):
246
- gr.Markdown("The table displays the predicted emotion and its confidence value for each sentence in the text.")
247
 
248
  with gr.Row():
249
  with gr.Column(scale=7):
250
  heatmap = gr.Plot()
251
  with gr.Column(scale=3):
252
- gr.Markdown("The table displays the predicted emotion and its confidence value for each sentence in the text")
253
 
254
  with gr.Row():
255
  model_info = gr.Markdown()
 
13
  import plotly.express as px
14
  import seaborn as sns
15
  from tqdm import tqdm
16
+ from utils import css
17
 
18
  PATH = '/data/' # at least 150GB storage needs to be attached
19
  os.environ['TRANSFORMERS_CACHE'] = PATH
 
208
  return results, figure, piechart, heatmap, output_info
209
 
210
 
211
+ with gr.Blocks(css=css) as demo:
212
  placeholder = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua."
213
  introduction = """This platform is designed to detect and visualize emotions in text. The model behind it operates using a 6-label codebook, including the following labels: ‘Anger’, ‘Fear’, ‘Disgust’, ‘Sadness’, ‘Joy’, and ‘None of Them’.
214
  The model is optimized for sentence-level analysis, and make predictions in the following languages: Czech, English, French, German, Hungarian, Polish, and Slovak.
215
  The text you enter in the input box is automatically divided into sentences, and the analysis is performed on each sentence. Depending on the length of the text, this process may take a few seconds, but for longer texts, it can take up to 2-3 minutes.
216
  """
217
+ gr.Markdown(introduction, elem_classes="info")
218
  with gr.Row():
219
  with gr.Column():
220
  input_text = gr.Textbox(lines=6, label="Input", placeholder="Enter your text here...")
 
228
  with gr.Column(scale=7):
229
  piechart = gr.Plot()
230
  with gr.Column(scale=3):
231
+ gr.Markdown("The following pie chart shows the average probabilities of all emotions associated with the entire text.", elem_classes="info")
232
 
233
  with gr.Row():
234
  with gr.Column(scale=7):
235
  plot = gr.Plot()
236
  with gr.Column(scale=3):
237
+ gr.Markdown("The bar plot represents the relative frequency of emotion predictions at the sentence level.", elem_classes="info")
238
 
239
  with gr.Row():
240
  with gr.Column(scale=7):
 
244
  wrap=True # important
245
  )
246
  with gr.Column(scale=3):
247
+ gr.Markdown("The table displays the predicted emotion and its confidence value for each sentence in the text.", elem_classes="info")
248
 
249
  with gr.Row():
250
  with gr.Column(scale=7):
251
  heatmap = gr.Plot()
252
  with gr.Column(scale=3):
253
+ gr.Markdown("The table displays the predicted emotion and its confidence value for each sentence in the text", elem_classes="info")
254
 
255
  with gr.Row():
256
  model_info = gr.Markdown()
utils.py CHANGED
@@ -27,4 +27,8 @@ def download_hf_models():
27
  token=HF_TOKEN)
28
  for tokenizer_id in tokenizers:
29
  AutoTokenizer.from_pretrained(tokenizer_id)
 
 
 
 
30
 
 
27
  token=HF_TOKEN)
28
  for tokenizer_id in tokenizers:
29
  AutoTokenizer.from_pretrained(tokenizer_id)
30
+
31
+ css = '''
32
+ .info {font-size: 3em; !important}
33
+ '''
34