Spaces:
Runtime error
Runtime error
File size: 7,613 Bytes
48d4d11 70d74f0 48d4d11 43d4e83 a62cc34 d904dd4 48d4d11 ca02509 bf91121 43d4e83 59fbf6a 43d4e83 59fbf6a 43d4e83 59fbf6a 43d4e83 59fbf6a 43d4e83 bf91121 43d4e83 59fbf6a 43d4e83 59fbf6a d904dd4 59fbf6a 43d4e83 59fbf6a 43d4e83 bf91121 43d4e83 70d74f0 5650543 70d74f0 6f4a113 bf1e0a0 70d74f0 a62cc34 d904dd4 a62cc34 d904dd4 a62cc34 d904dd4 a62cc34 d904dd4 70d74f0 a62cc34 d904dd4 a62cc34 d904dd4 a62cc34 70d74f0 bf1e0a0 70d74f0 f14cff1 70d74f0 f14cff1 70d74f0 5650543 70d74f0 5650543 70d74f0 5650543 70d74f0 fa3e7dd 48d4d11 70d74f0 fa3e7dd 70d74f0 f14cff1 70d74f0 f14cff1 70d74f0 5650543 43d4e83 70d74f0 5650543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import time
from googleapiclient.discovery import build
import asyncio
import httpx
from dotenv import load_dotenv
import requests
import fitz
from trafilatura import extract
load_dotenv()
API_KEY = os.environ.get("GOOGLE_SEARCH_API_KEY")
CSE_KEY = os.environ.get("GOOGLE_SEARCH_CSE_ID")
# Number of pages to scrape
NUM_PAGES = 10
def build_results_beautifulsoup(url_list):
print("Starting to scrape URLs...")
start_time = time.perf_counter()
# scrape URLs in list
soups = asyncio.run(parallel_scrap(url_list))
scraping_time = time.perf_counter() - start_time
print(f"Scraping processing time: {scraping_time:.2f} seconds")
result_content = {}
count = 0
print("Starting to process each URL...")
for url, soup in zip(url_list, soups):
if count >= NUM_PAGES:
print(f"Reached the limit of {NUM_PAGES} pages. Stopping processing.")
break
if soup:
print(f"Processing URL: {url}")
text = extract(
soup,
include_tables=False,
include_comments=False,
output_format="txt",
)
# If text is None or empty, log a warning and skip
if text is None:
print(f"Warning: Extraction returned None for URL: {url}")
elif len(text) > 500:
print(f"Adding content from URL: {url}, content length: {len(text)}")
result_content[url] = text
count += 1
else:
print(f"Skipped URL: {url}, content too short (length: {len(text)})")
else:
print(f"Skipped URL: {url}, no soup content available.")
print("Finished processing URLs.")
return result_content
def build_results_extractor(url_list):
try:
endpoint = "https://extractorapi.com/api/v1/extractor"
result_content = {}
count = 0
for url in url_list:
if count >= NUM_PAGES:
break
params = {"apikey": os.environ.get("EXTRACTOR_API_KEY"), "url": url}
r = requests.get(endpoint, params=params)
if r.status_code == 200:
text = r.json()["text"]
if len(text) > 500:
result_content[url] = text
count += 1
if r.status_code == 403:
raise Exception(f"Error with API; using default implementaion instead")
return result_content
except Exception as e:
print(e)
return build_results_beautifulsoup(url_list)
months = {
"January": "01",
"February": "02",
"March": "03",
"April": "04",
"May": "05",
"June": "06",
"July": "07",
"August": "08",
"September": "09",
"October": "10",
"November": "11",
"December": "12",
}
domain_list = ["com", "org", "net", "int", "edu", "gov", "mil"]
skip_urls = ["youtube.com", "twitter.com", "facebook.com", "instagram.com", "x.com"]
def build_date(year=2024, month="March", day=1):
return f"{year}{months[month]}{day}"
async def get_url_data(url, client):
try:
r = await client.get(url, follow_redirects=True)
print(f"URL: {url}, Response Code: {r.status_code}")
if r.status_code == 200:
content_type = r.headers.get("Content-Type", "").lower()
# Improved PDF detection using Content-Type and file extension
if "application/pdf" in content_type or url.lower().endswith(".pdf"):
print(f"Detected PDF content via Content-Type or file extension at URL: {url}")
pdf_content = await extract_pdf_text(r.content)
return pdf_content
else:
return r.content
else:
print(f"Non-200 response for URL: {url}, status code: {r.status_code}")
return None
except Exception as e:
print(f"Error fetching URL: {url}, Error: {str(e)}")
return None
async def extract_pdf_text(content):
try:
with fitz.open(stream=content, filetype="pdf") as doc:
text = ""
for page in doc:
text += page.get_text()
html_content = f"""
<!DOCTYPE html>
<html>
<body>
<p>{text}</p>
</body>
</html>
"""
html_bytes = html_content.encode('utf-8')
return html_bytes # Return in such a format that is parsable by trafilatura
except Exception as e:
print(f"Error extracting PDF text: {str(e)}")
return None
async def parallel_scrap(urls):
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
}
async with httpx.AsyncClient(timeout=30, headers=headers) as client:
tasks = []
for url in urls:
tasks.append(get_url_data(url=url, client=client))
results = await asyncio.gather(*tasks, return_exceptions=True)
return results
def scrap(urls):
client = httpx.Client()
soups = []
for url in urls:
soups.append(get_url_data(url=url, client=client))
return soups
def google_search_urls(
text,
sorted_date,
domains_to_include,
api_key,
cse_id,
num_results=10, # Number of results to fetch per page
total_results=30, # Total number of results to fetch
skip_urls=None, # List of URLs to skip
**kwargs,
):
if skip_urls is None:
skip_urls = [] # Initialize as empty list if not provided
service = build("customsearch", "v1", developerKey=api_key)
url_list = []
start_index = 1 # Initial index for the search results
while len(url_list) < total_results:
# Fetch a page of results
results = service.cse().list(
q=text,
cx=cse_id,
sort=sorted_date,
start=start_index,
num=min(num_results, total_results - len(url_list)),
**kwargs
).execute()
if "items" in results and len(results["items"]) > 0:
for count, link in enumerate(results["items"]):
url = link["link"]
# Skip if the URL is in the skip_urls list or doesn't match the domain filter
if url in skip_urls:
continue
if (domains_to_include is None) or any(
("." + domain) in url for domain in domains_to_include
):
if url not in url_list:
url_list.append(url)
else:
# No more results
break
# Move to the next page of results
start_index += num_results
return url_list[:total_results]
def google_search(topic, sorted_date, domains_to_include, scholar_mode_check):
api_key = os.environ.get("GOOGLE_SEARCH_API_KEY")
cse_id = os.environ.get("GOOGLE_SEARCH_CSE_ID")
start_time = time.perf_counter()
if scholar_mode_check:
topic += " -filetype:pdf"
url_list = google_search_urls(
topic,
sorted_date,
domains_to_include,
api_key,
cse_id,
)
print("---")
print(len(url_list))
print(url_list)
print("---")
print("Google Search processing time: ", time.perf_counter() - start_time)
result_content = build_results_beautifulsoup(url_list)
return result_content
res = google_search("Low Resource ", "date:r:20240101:20241231", domain_list, False)
print(res.keys())
print(len(res)) |