File size: 3,852 Bytes
19de1c9
 
 
 
 
9d1ac35
19de1c9
 
 
 
 
 
 
 
 
 
 
 
9d1ac35
19de1c9
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1ac35
19de1c9
 
 
 
 
 
 
 
 
 
 
 
 
9d1ac35
 
19de1c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1ac35
19de1c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1ac35
19de1c9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# import torch
# from nltk import sent_tokenize
# import nltk
# from tqdm import tqdm
# from transformers import T5ForConditionalGeneration, T5Tokenizer

# nltk.download("punkt")
# # autodetect the available device
# GPU_IDX = 1  # which GPU to use
# if torch.cuda.is_available():
#     num_gpus = torch.cuda.device_count()
#     print(f"Number of available GPUs: {num_gpus}")
#     assert GPU_IDX < num_gpus, f"GPU index {GPU_IDX} not available."
#     device = torch.device(f"cuda:{GPU_IDX}")
#     print(f"Using GPU: {GPU_IDX}")
# else:
#     print("CUDA is not available. Using CPU instead.")
#     device = torch.device("cpu")

# # Configuration for models and their adapters
# model_config = {
#     "Base Model": "polygraf-ai/poly-humanizer-base",
#     "Large Model": "polygraf-ai/poly-humanizer-large",
#     # "XL Model": {
#     #     "path": "google/flan-t5-xl",
#     #     "adapters": {
#     #         "XL Model Adapter": "polygraf-ai/poly-humanizer-XL-adapter",
#     #         "XL Law Model Adapter": "polygraf-ai/poly-humanizer-XL-law-adapter",
#     #         "XL Marketing Model Adapter": "polygraf-ai/marketing-cleaned-13K-grad-acum-4-full",
#     #         "XL Child Style Model Adapter": "polygraf-ai/poly-humanizer-XL-children-adapter-checkpoint-4000",
#     #     },
#     # },
# }

# # cache the base models, tokenizers, and adapters
# models, tokenizers = {}, {}
# for name, config in model_config.items():
#     path = config if isinstance(config, str) else config["path"]
#     # initialize model and tokenizer
#     model = T5ForConditionalGeneration.from_pretrained(path, torch_dtype=torch.bfloat16).to(device)
#     models[name] = model
#     tokenizers[name] = T5Tokenizer.from_pretrained(path)
#     # load all avalable adapters, each being additional roughly 150M parameters
#     if isinstance(config, dict) and "adapters" in config:
#         for adapter_name, adapter_path in config["adapters"].items():
#             model.load_adapter(adapter_path, adapter_name=adapter_name)
#             print(f"Loaded adapter: {adapter_name}, Num. params: {model.num_parameters()}")


# def paraphrase_text(
#     text,
#     model_name="Base Model",
#     temperature=1.2,
#     repetition_penalty=1.0,
#     top_k=50,
#     length_penalty=1.0,
# ):
#     # select the model, tokenizer and adapter
#     if "XL" in model_name:  # dynamic adapter load/unload for XL models
#         # all adapter models use the XL model as the base
#         tokenizer, model = tokenizers["XL Model"], models["XL Model"]
#         # set the adapter if it's not already set
#         if model.active_adapters() != [f"{model_name} Adapter"]:
#             model.set_adapter(f"{model_name} Adapter")
#             print(f"Using adapter: {model_name} Adapter")
#     else:
#         tokenizer = tokenizers[model_name]
#         model = models[model_name]

#     # paraphrase each chunk of text
#     sentences = sent_tokenize(text)  # sentence boundary detection
#     paraphrases = []
#     for sentence in tqdm(sentences):
#         sentence = sentence.strip()
#         if len(sentence) == 0:
#             continue
#         inputs = tokenizer("Please paraphrase this sentence: " + sentence, return_tensors="pt").to(device)
#         outputs = model.generate(
#             **inputs,
#             do_sample=True,
#             temperature=temperature,
#             repetition_penalty=repetition_penalty,
#             max_length=128,
#             top_k=top_k,
#             length_penalty=length_penalty,
#         )
#         paraphrased_sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
#         paraphrases.append(paraphrased_sentence)
#         print(f"\nOriginal: {sentence}")
#         print(f"Paraphrased: {paraphrased_sentence}")

#     combined_paraphrase = " ".join(paraphrases)
#     return combined_paraphrase