Spaces:
Runtime error
Runtime error
File size: 4,131 Bytes
a54c1ef 42f072b d994b45 a54c1ef 42f072b 9d1ac35 42f072b 1ff94f4 42f072b 9d1ac35 a54c1ef 03fd59b 42f072b a54c1ef 42f072b 9d1ac35 42f072b a54c1ef 42f072b a54c1ef 9d1ac35 42f072b d994b45 42f072b a54c1ef d994b45 a54c1ef 9d1ac35 a54c1ef 20d4ded a54c1ef 9d1ac35 a54c1ef 20d4ded a54c1ef 20d4ded 84c08ee 20d4ded |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import gc
import torch
from nltk import sent_tokenize
import nltk
from tqdm import tqdm
import gradio as gr
from peft import PeftModel
from transformers import T5ForConditionalGeneration, T5Tokenizer
nltk.download("punkt")
# autodetect the available device
GPU_IDX = 1 # which GPU to use
if torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
print(f"Number of available GPUs: {num_gpus}")
assert GPU_IDX < num_gpus, f"GPU index {GPU_IDX} not available."
device = torch.device(f"cuda:{GPU_IDX}")
print(f"Using GPU: {GPU_IDX}")
else:
print("CUDA is not available. Using CPU instead.")
device = torch.device("cpu")
batch_size = 64
# Configuration for models and their adapters
model_config = {
"Base Model": "polygraf-ai/poly-humanizer-base",
"Large Model": "polygraf-ai/poly-humanizer-large",
"XL Model": "polygraf-ai/poly-humanizer-XL-adapter",
}
# cache the base models, tokenizers, and adapters
# initialize model and tokenizer
models, tokenizers = {}, {}
for name, path in model_config.items():
if name == "XL Model":
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl", torch_dtype=torch.bfloat16).to(device)
model = PeftModel.from_pretrained(model, path, torch_dtype=torch.bfloat16, is_trainable=False)
model = model.merge_and_unload()
models[name] = model
tokenizers[name] = T5Tokenizer.from_pretrained("google/flan-t5-xl")
else:
model = T5ForConditionalGeneration.from_pretrained(path, torch_dtype=torch.bfloat16).to(device)
models[name] = model
tokenizers[name] = T5Tokenizer.from_pretrained(path)
print(f"Loaded model: {name}, Num. params: {model.num_parameters()}")
def paraphrase_sentences(model, tokenizer, sentences, temperature, repetition_penalty, top_k, length_penalty):
inputs = ["Please paraphrase this sentence: " + sentence for sentence in sentences]
inputs = tokenizer(inputs, return_tensors="pt", padding=True, truncation=True).to(model.device)
outputs = model.generate(
**inputs,
do_sample=True,
temperature=temperature,
repetition_penalty=repetition_penalty,
max_length=128,
top_k=top_k,
length_penalty=length_penalty,
)
answers = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
return answers
def paraphrase_text(
text,
progress=gr.Progress(),
model_name="Base Model",
temperature=1.2,
repetition_penalty=1.0,
top_k=50,
length_penalty=1.0,
):
"""
Optimization here is to feed all sentences at once to the model.
Paragraphs are stored as a number of sentences per paragraph.
"""
progress(0, desc="Starting to Humanize")
progress(0.05)
# Select the model, tokenizer, and adapter
tokenizer = tokenizers[model_name]
model = models[model_name].to(device)
# Split the text into paragraphs and then into sentences
paragraphs = text.split("\n")
all_sentences = []
sentences_per_paragraph = []
for paragraph in paragraphs:
sentences = sent_tokenize(paragraph)
sentences_per_paragraph.append(len(sentences))
all_sentences.extend(sentences)
# Process all sentences in batches
paraphrased_sentences = []
for i in range(0, len(all_sentences), batch_size):
batch_sentences = all_sentences[i : i + batch_size]
paraphrased_batch = paraphrase_sentences(
model, tokenizer, batch_sentences, temperature, repetition_penalty, top_k, length_penalty
)
paraphrased_sentences.extend(paraphrased_batch)
# Clear memory
torch.cuda.empty_cache()
gc.collect()
# Reconstruct paragraphs
humanized_paragraphs = []
sentence_index = 0
for num_sentences in sentences_per_paragraph:
humanized_paragraph = " ".join(paraphrased_sentences[sentence_index : sentence_index + num_sentences])
humanized_paragraphs.append(humanized_paragraph)
sentence_index += num_sentences
humanized_text = "\n".join(humanized_paragraphs)
return humanized_text
|