Spaces:
Runtime error
Runtime error
File size: 38,248 Bytes
2d6909b db77dd7 2d6909b 34b1950 20dc449 b72ef7f 439d01d e2a79fa b72ef7f 132b0ec 5534eb0 e2a79fa 132b0ec f716a54 5534eb0 708f094 e2a79fa f716a54 132b0ec a32fa53 89644d7 a32fa53 89644d7 132b0ec a32fa53 132b0ec a54c1ef 89644d7 132b0ec e3277bc 89644d7 132b0ec 118507a 89644d7 118507a d994b45 89644d7 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 89644d7 43d4e83 34b1950 20dc449 34b1950 43d4e83 34b1950 43d4e83 34b1950 43d4e83 da88846 43d4e83 89644d7 43d4e83 34b1950 43d4e83 34b1950 6402181 89644d7 291ffbc ef88cd6 132b0ec 89644d7 132b0ec 89644d7 132b0ec 89644d7 34b1950 89644d7 132b0ec 89644d7 132b0ec 89644d7 132b0ec 89644d7 132b0ec 89644d7 132b0ec 89644d7 7c7ccca 89644d7 7c7ccca 89644d7 132b0ec 34b1950 89644d7 132b0ec a32fa53 132b0ec 89644d7 5534eb0 132b0ec 5534eb0 132b0ec 5534eb0 132b0ec 5534eb0 89644d7 5534eb0 132b0ec 89644d7 a32fa53 da88846 34b1950 5534eb0 da88846 5534eb0 132b0ec 89644d7 132b0ec 20dc449 f14cff1 9177c6e 708f094 20dc449 34b1950 20dc449 43d4e83 20dc449 89644d7 7454788 f14cff1 7454788 708f094 7454788 708f094 34b1950 132b0ec 118507a 7454788 708f094 7454788 89644d7 20dc449 f14cff1 20dc449 708f094 20dc449 f14cff1 708f094 bf91121 708f094 7454788 20dc449 f14cff1 20dc449 708f094 cf245ed 20dc449 cf245ed 20dc449 cf245ed f14cff1 7454788 20dc449 cf245ed 7454788 cf245ed 34b1950 bf91121 34b1950 cf245ed 20dc449 86218e7 89644d7 b96ba8b 439d01d b96ba8b 439d01d 46f0706 cf245ed 20dc449 cf245ed b96ba8b 20dc449 43d4e83 34b1950 e2a79fa 34b1950 20dc449 46f0706 43d4e83 439d01d b96ba8b d994b45 89644d7 20dc449 cf245ed cc2969a 89644d7 d09cdf3 e2a79fa c412123 20dc449 f14cff1 cf245ed 708f094 cf245ed f14cff1 70d74f0 f14cff1 aaa4e80 03fd59b b96ba8b bf91121 7454788 20dc449 f14cff1 10aedaa f14cff1 34b1950 ef88cd6 f14cff1 43d4e83 f14cff1 34b1950 2a53cb7 20dc449 f14cff1 2a53cb7 708f094 cf245ed f14cff1 708f094 bf91121 03fd59b 7454788 20dc449 34b1950 439d01d c412123 b96ba8b 20dc449 89644d7 20dc449 cf245ed 7454788 cf245ed b96ba8b 70d74f0 20dc449 cf245ed 20dc449 f14cff1 cf245ed 708f094 cf245ed 20dc449 cf245ed d09cdf3 3dae562 cf245ed 20dc449 cf245ed 20dc449 9177c6e c85110b 9177c6e 89644d7 9177c6e cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed f8ec92b 20dc449 cf245ed 20dc449 cf245ed e9640b0 20dc449 cf245ed d09cdf3 20dc449 cf245ed d09cdf3 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 c85110b 20dc449 cf245ed 20dc449 c85110b 43d4e83 03fd59b 43d4e83 59fbf6a 43d4e83 3dae562 f716a54 70d74f0 43d4e83 439d01d 59fbf6a 439d01d 20dc449 cf245ed 20dc449 439d01d 5534eb0 439d01d e2a79fa 439d01d 2a53cb7 439d01d 2a53cb7 b96ba8b 2a53cb7 439d01d 2a53cb7 cf245ed 03fd59b 7454788 e3277bc 03fd59b e3277bc 03fd59b 89644d7 7454788 e2a79fa d09cdf3 e2a79fa d09cdf3 20dc449 d994b45 f14cff1 cf245ed 708f094 20dc449 5c509dc 20dc449 708f094 f716a54 f14cff1 70d74f0 f14cff1 aaa4e80 03fd59b b96ba8b d994b45 b96ba8b d994b45 e3277bc 7454788 f14cff1 7454788 708f094 7454788 708f094 f716a54 f14cff1 70d74f0 f14cff1 03fd59b b96ba8b 7454788 aaa4e80 7454788 b96ba8b 7454788 d994b45 20dc449 5534eb0 20dc449 d994b45 20dc449 46f0706 afad1bb 20dc449 afad1bb b96ba8b afad1bb b96ba8b 20dc449 d994b45 b96ba8b 2a53cb7 20dc449 d994b45 cf245ed afad1bb 20dc449 8bd7fd1 f801525 8bd7fd1 ef88cd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 |
"""
nohup python3 app.py &
export GOOGLE_APPLICATION_CREDENTIALS="gcp_creds.json"
"""
import re
from typing import Dict
from collections import defaultdict
from datetime import date, datetime
import gradio as gr
import nltk
import torch
import numpy as np
from scipy.special import softmax
import language_tool_python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from utils import remove_special_characters, split_text_allow_complete_sentences_nltk
from google_search import google_search, months, domain_list, build_date
from humanize import humanize_text, device
from ai_generate import generate
print(f"Using device: {device}")
models = {
"Polygraf AI (Base Model)": AutoModelForSequenceClassification.from_pretrained(
"polygraf-ai/bc-roberta-openai-2sent"
).to(device),
"Polygraf AI (Advanced Model)": AutoModelForSequenceClassification.from_pretrained(
"polygraf-ai/bc_combined_3sent"
).to(device),
}
tokenizers = {
"Polygraf AI (Base Model)": AutoTokenizer.from_pretrained("polygraf-ai/bc-roberta-openai-2sent"),
"Polygraf AI (Advanced Model)": AutoTokenizer.from_pretrained("polygraf-ai/bc_combined_3sent"),
}
# grammar correction tool
tool = language_tool_python.LanguageTool("en-US")
# Function to move model to the appropriate device
def to_device(model):
return model.to(device)
def copy_to_input(text):
return text
def remove_bracketed_numbers(text):
pattern = r"^\[\d+\]"
cleaned_text = re.sub(pattern, "", text)
return cleaned_text
def clean_text(text: str) -> str:
paragraphs = text.split("\n\n")
cleaned_paragraphs = []
for paragraph in paragraphs:
cleaned = re.sub(r"\s+", " ", paragraph).strip()
cleaned = re.sub(r"(?<=\.) ([a-z])", lambda x: x.group(1).upper(), cleaned)
cleaned_paragraphs.append(cleaned)
return "\n".join(cleaned_paragraphs)
def format_references(text: str) -> str:
body, references = split_text_from_refs(text)
return body + references
def split_text_from_refs(text: str, sep="\n"):
lines = text.split("\n")
references = []
article_text = []
index_pattern = re.compile(r"\[(\d+)\]")
in_references = False
for line in lines:
if line == "":
continue
match = re.search(r"[Rr]eferences:", line, re.DOTALL)
if line.strip().lower() == "references" or line.strip().lower() == "references:":
in_references = True
continue
if line.strip().lower().startswith("references:"):
in_references = True
if match:
in_references = True
line = line[match.end() :]
if in_references:
matches = index_pattern.split(line)
for match in matches:
if match.strip() and not match.isdigit() and not match.strip().lower().startswith("references:"):
references.append(match.strip())
else:
article_text.append(line.strip())
if len(references) > 0:
formatted_refs = []
for i, ref in enumerate(references, 1):
ref = remove_bracketed_numbers(ref)
formatted_refs.append(f"[{i}] {ref}{sep}")
formatted_refs = f"{sep}{sep}References:{sep}{sep}" + f"{sep}".join(formatted_refs)
else:
formatted_refs = ""
body = f"{sep}{sep}".join(article_text)
return body, formatted_refs
def ends_with_references(text):
# Define a regular expression pattern for variations of "References:"
pattern = re.compile(r"\b[Rr]eferences:\s*$", re.IGNORECASE | re.MULTILINE)
# Check if the text ends with any form of "References:"
return bool(pattern.search(text.strip()))
def format_and_correct_language_check(text: str) -> str:
return tool.correct(text)
def predict(model, tokenizer, text):
text = remove_special_characters(text)
bc_token_size = 256
with torch.no_grad():
model.eval()
tokens = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=bc_token_size,
return_tensors="pt",
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
output_norm = {"HUMAN": output_norm[0], "AI": output_norm[1]}
return output_norm
def ai_generated_test(text, model="BC Original"):
return predict(models[model], tokenizers[model], text)
def detection_polygraf(text, model="BC Original"):
# sentences = split_into_sentences(text)
sentences = nltk.sent_tokenize(text)
num_sentences = len(sentences)
scores = defaultdict(list)
overall_scores = []
# Process each chunk of 3 sentences and store the score for each sentence in the chunk
for i in range(num_sentences):
chunk = " ".join(sentences[i : i + 3])
if chunk:
# result = classifier(chunk)
result = ai_generated_test(chunk, model)
score = result["AI"]
for j in range(i, min(i + 3, num_sentences)):
scores[j].append(score)
# Calculate the average score for each sentence and apply color coding
paragraphs = text.split("\n")
paragraphs = [s for s in paragraphs if s.strip()]
colored_paragraphs = []
i = 0
for paragraph in paragraphs:
temp_sentences = nltk.sent_tokenize(paragraph)
colored_sentences = []
for sentence in temp_sentences:
if scores[i]:
avg_score = sum(scores[i]) / len(scores[i])
if avg_score >= 0.70:
colored_sentence = f"<span style='background-color:red;'>{sentence}</span>"
elif avg_score >= 0.55:
colored_sentence = f"<span style='background-color:GoldenRod;'>{sentence}</span>"
else:
colored_sentence = sentence
colored_sentences.append(colored_sentence)
overall_scores.append(avg_score)
i = i + 1
combined_sentences = " ".join(colored_sentences)
colored_paragraphs.append(combined_sentences)
overall_score = sum(overall_scores) / len(overall_scores)
overall_score = {"HUMAN": 1 - overall_score, "AI": overall_score}
return overall_score, "<br><br>".join(colored_paragraphs)
ai_check_options = [
"Polygraf AI (Base Model)",
"Polygraf AI (Advanced Model)",
]
MC_TOKEN_SIZE = 256
TEXT_MC_MODEL_PATH = "polygraf-ai/mc-model"
MC_LABEL_MAP = ["OpenAI GPT", "Mistral", "CLAUDE", "Gemini", "Grammar Enhancer"]
text_mc_tokenizer = AutoTokenizer.from_pretrained(TEXT_MC_MODEL_PATH)
text_mc_model = AutoModelForSequenceClassification.from_pretrained(TEXT_MC_MODEL_PATH).to(device)
def predict_mc(text):
with torch.no_grad():
text_mc_model.eval()
tokens = text_mc_tokenizer(
text,
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=MC_TOKEN_SIZE,
).to(device)
output = text_mc_model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_mc_scores(input, bc_score):
mc_scores = []
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc", tokenizer=text_mc_tokenizer)
samples_len_mc = len(split_text_allow_complete_sentences_nltk(input, type_det="mc", tokenizer=text_mc_tokenizer))
for i in range(samples_len_mc):
cleaned_text_mc = remove_special_characters(segments_mc[i])
mc_score = predict_mc(cleaned_text_mc)
mc_scores.append(mc_score)
mc_scores_array = np.array(mc_scores)
average_mc_scores = np.mean(mc_scores_array, axis=0)
mc_score_list = average_mc_scores.tolist()
mc_score = {}
for score, label in zip(mc_score_list, MC_LABEL_MAP):
mc_score[label.upper()] = score
sum_prob = 1 - bc_score["HUMAN"]
for key, value in mc_score.items():
mc_score[key] = value * sum_prob
print("MC Score:", mc_score)
if sum_prob < 0.01:
mc_score = {}
return mc_score
def highlighter_polygraf(text, model="Polygraf AI (Base Model)"):
body, references = split_text_from_refs(text)
score, text = detection_polygraf(text=body, model=model)
mc_score = predict_mc_scores(body, score) # mc score
text = text + references.replace("\n", "<br>")
return score, text, mc_score
def ai_check(text: str, option: str):
if option.startswith("Polygraf AI"):
return highlighter_polygraf(text, option)
else:
return highlighter_polygraf(text, option)
def generate_prompt(settings: Dict[str, str]) -> str:
prompt = f"""
I am a {settings['role']}
Write a {settings['article_length']} words (around) {settings['format']} on {settings['topic']}.
Context:
- {settings['context']}
Style and Tone:
- Writing style: {settings['writing_style']}
- Tone: {settings['tone']}
- Target audience: {settings['user_category']}
Content:
- Depth: {settings['depth_of_content']}
- Structure: {', '.join(settings['structure'])}
Keywords to incorporate:
{', '.join(settings['keywords'])}
Additional requirements:
- Don't start with "Here is a...", start with the requested text directly
- Include {settings['num_examples']} relevant examples or case studies
- Incorporate data or statistics from {', '.join(settings['references'])}
- End with a {settings['conclusion_type']} conclusion
- Add a "References" section in the format "References:" on a new line at the end with at least 3 credible detailed sources, formatted as [1], [2], etc. with each source on their own line
- Do not repeat sources
- Do not make any headline, title bold.
Ensure proper paragraph breaks for better readability.
Avoid any references to artificial intelligence, language models, or the fact that this is generated by an AI, and do not mention something like here is the article etc.
"""
return prompt
def regenerate_prompt(settings: Dict[str, str]) -> str:
prompt = f"""
I am a {settings['role']}
"{settings['generated_article']}"
Edit the given text based on user comments.
User Comments:
- {settings['user_comments']}
Requirements:
- Don't start with "Here is a...", start with the requested text directly
- The original content should not be changed. Make minor modifications based on user comments above.
- Keep the references the same as the given text in the same format.
- Do not make any headline, title bold.
Context:
- {settings['context']}
Ensure proper paragraph breaks for better readability.
Avoid any references to artificial intelligence, language models, or the fact that this is generated by an AI, and do not mention something like here is the article etc.
"""
return prompt
def generate_article(
input_role: str,
topic: str,
context: str,
keywords: str,
article_length: str,
format: str,
writing_style: str,
tone: str,
user_category: str,
depth_of_content: str,
structure: str,
references: str,
num_examples: str,
conclusion_type: str,
ai_model: str,
content_string: str,
url_content: str = None,
api_key: str = None,
pdf_file_input: list[str] = None,
generated_article: str = None,
user_comments: str = None,
) -> str:
settings = {
"role": input_role,
"topic": topic,
"context": context,
"keywords": [k.strip() for k in keywords.split(",")],
"article_length": article_length,
"format": format,
"writing_style": writing_style,
"tone": tone,
"user_category": user_category,
"depth_of_content": depth_of_content,
"structure": [s.strip() for s in structure.split(",")],
"references": [r.strip() for r in references.split(",")],
"num_examples": num_examples,
"conclusion_type": conclusion_type,
"sources": content_string,
"generated_article": generated_article,
"user_comments": user_comments,
}
if generated_article:
prompt = regenerate_prompt(settings)
else:
prompt = generate_prompt(settings)
print("Generated Prompt...\n", prompt)
article = generate(
prompt=prompt,
topic=topic,
model=ai_model,
url_content=url_content,
path=pdf_file_input,
temperature=1,
max_length=2048,
api_key=api_key,
sys_message="",
)
return clean_text(article)
def get_history(history):
return history
def clear_history():
# Return empty list for history state and display
return [], []
def humanize(
text: str,
model: str,
temperature: float = 1.2,
repetition_penalty: float = 1,
top_k: int = 50,
length_penalty: float = 1,
history=None,
) -> str:
print("Humanizing text...")
body, references = split_text_from_refs(text)
result = humanize_text(
text=body,
model_name=model,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_k=top_k,
length_penalty=length_penalty,
)
result = result + references
corrected_text = format_and_correct_language_check(result)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
history.append((f"Humanized Text | {timestamp}\nInput: {model}", corrected_text))
return corrected_text, history
def update_visibility_api(model: str):
if model in ["OpenAI GPT 3.5", "OpenAI GPT 4"]:
return gr.update(visible=True)
else:
return gr.update(visible=False)
# Function to update the default selected structure based on the selected format
def update_structure(format_choice):
# List of formats that should use "Plain Text"
plain_text_formats = [
"TikTok Video Content",
"Instagram Video Content",
"LinkedIn post",
"X (Twitter) post",
"Facebook post",
"Email",
]
# Set the appropriate default structure based on the selected format
if format_choice in plain_text_formats:
return gr.update(value="Plain Text", interactive=True)
else:
return gr.update(value="Introduction, Body, Conclusion", interactive=True)
def update_temperature(model_dropdown):
if model_dropdown == "Standard Model":
return gr.update(value=1.2, interactive=True)
elif model_dropdown == "Advanced Model (Beta)":
return gr.update(value=1.0, interactive=True)
import uuid
import json
from datetime import datetime
from google.cloud import storage
# Initialize Google Cloud Storage client
client = storage.Client()
bucket_name = "ai-source-detection"
bucket = client.bucket(bucket_name)
def save_to_cloud_storage(
article,
input_role,
topic_context,
context,
keywords,
article_length,
format,
writing_style,
tone,
user_category,
depth_of_content,
structure,
references,
num_examples,
conclusion_type,
ai_model,
content_string,
url_content,
generated_article,
user_comments,
timestamp,
):
"""Save generated article and metadata to Google Cloud Storage within a specific folder."""
# Create a unique filename
file_id = str(uuid.uuid4())
# Define the file path and name in the bucket
folder_path = "ai-writer/"
file_name = f"{folder_path}{timestamp.replace(' ', '_').replace(':', '-')}_{file_id}.json"
# Create a dictionary with the article and all relevant metadata
data = {
"article": article,
"metadata": {
"input_role": input_role,
"topic_context": topic_context,
"context": context,
"keywords": keywords,
"article_length": article_length,
"format": format,
"writing_style": writing_style,
"tone": tone,
"user_category": user_category,
"depth_of_content": depth_of_content,
"structure": structure,
"references": references,
"num_examples": num_examples,
"conclusion_type": conclusion_type,
"ai_model": ai_model,
"content_string": content_string,
"url_content": url_content,
"generated_article": generated_article,
"user_comments": user_comments,
"timestamp": timestamp,
},
}
# Convert data to JSON string
json_data = json.dumps(data)
# Create a blob and upload to GCS
blob = bucket.blob(file_name)
blob.upload_from_string(json_data, content_type="application/json")
return f"Data saved as {file_name} in GCS."
def generate_and_format(
input_role,
topic,
context,
keywords,
article_length,
format,
writing_style,
tone,
user_category,
depth_of_content,
structure,
references,
num_examples,
conclusion_type,
google_search_check,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_include,
include_sites,
exclude_sites,
pdf_file_input,
history=None,
ai_model="OpenAI GPT 4o",
api_key=None,
generated_article: str = None,
user_comments: str = None,
):
content_string = ""
url_content = None
if google_search_check:
date_from = build_date(year_from, month_from, day_from)
date_to = build_date(year_to, month_to, day_to)
sorted_date = f"date:r:{date_from}:{date_to}"
final_query = topic
if include_sites:
site_queries = [f"site:{site.strip()}" for site in include_sites.split(",")]
final_query += " " + " OR ".join(site_queries)
if exclude_sites:
exclude_queries = [f"-site:{site.strip()}" for site in exclude_sites.split(",")]
final_query += " " + " ".join(exclude_queries)
print(f"Google Search Query: {final_query}")
url_content = google_search(final_query, sorted_date, domains_to_include)
content_string = "\n".join(
f"{url.strip()}: \n{content.strip()[:2500]}" for url, content in url_content.items()
)
content_string = (
"Use the trusted information here from the URLs and add them as References:\n" + content_string
)
topic_context = topic + ", " + context
article = generate_article(
input_role,
topic_context,
context,
keywords,
article_length,
format,
writing_style,
tone,
user_category,
depth_of_content,
structure,
references,
num_examples,
conclusion_type,
ai_model,
content_string,
url_content,
api_key,
pdf_file_input,
generated_article,
user_comments,
)
if ends_with_references(article) and url_content is not None:
for url in url_content.keys():
article += f"\n{url}"
reference_formatted = format_references(article)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
history.append((f"Generated Text | {timestamp}\nInput: {topic}", reference_formatted))
# Save the article and metadata to Cloud Storage
# We dont save if there is PDF input for privacy reasons
if pdf_file_input is None:
save_message = save_to_cloud_storage(
article,
input_role,
topic_context,
context,
keywords,
article_length,
format,
writing_style,
tone,
user_category,
depth_of_content,
structure,
references,
num_examples,
conclusion_type,
ai_model,
content_string,
url_content,
generated_article,
user_comments,
timestamp,
)
print(save_message)
return reference_formatted, history
def create_interface():
with gr.Blocks(
theme=gr.themes.Default(
primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.yellow, neutral_hue=gr.themes.colors.gray
),
css="""
.input-highlight-pink block_label {background-color: #008080}
""",
) as demo:
history = gr.State([])
today = date.today()
# dd/mm/YY
d1 = today.strftime("%d/%B/%Y")
d1 = d1.split("/")
gr.Markdown("# Polygraf AI Content Writer", elem_classes="text-center text-3xl mb-6")
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("## Article Configuration", elem_classes="text-xl mb-4")
input_role = gr.Textbox(label="I am a", placeholder="Enter your role", value="Student")
input_topic = gr.Textbox(
label="Topic",
placeholder="Enter the main topic of your article",
elem_classes="input-highlight-pink",
)
input_context = gr.Textbox(
label="Context",
placeholder="Provide some context for your topic",
elem_classes="input-highlight-pink",
)
input_keywords = gr.Textbox(
label="Keywords",
placeholder="Enter comma-separated keywords",
elem_classes="input-highlight-yellow",
)
with gr.Row():
input_format = gr.Dropdown(
choices=[
"Article",
"Essay",
"Blog post",
"Report",
"Research paper",
"News article",
"White paper",
"Email",
"LinkedIn post",
"X (Twitter) post",
"Instagram Video Content",
"TikTok Video Content",
"Facebook post",
],
value="Article",
label="Format",
elem_classes="input-highlight-turquoise",
)
input_length = gr.Slider(
minimum=50,
maximum=5000,
step=50,
value=300,
label="Article Length",
elem_classes="input-highlight-pink",
)
with gr.Row():
input_writing_style = gr.Dropdown(
choices=[
"Formal",
"Informal",
"Technical",
"Conversational",
"Journalistic",
"Academic",
"Creative",
],
value="Formal",
label="Writing Style",
elem_classes="input-highlight-yellow",
)
input_tone = gr.Dropdown(
choices=["Friendly", "Professional", "Neutral", "Enthusiastic", "Skeptical", "Humorous"],
value="Professional",
label="Tone",
elem_classes="input-highlight-turquoise",
)
input_user_category = gr.Dropdown(
choices=[
"Students",
"Professionals",
"Researchers",
"General Public",
"Policymakers",
"Entrepreneurs",
],
value="General Public",
label="Target Audience",
elem_classes="input-highlight-pink",
)
input_depth = gr.Dropdown(
choices=[
"Surface-level overview",
"Moderate analysis",
"In-depth research",
"Comprehensive study",
],
value="Moderate analysis",
label="Depth of Content",
elem_classes="input-highlight-yellow",
)
input_structure = gr.Dropdown(
choices=[
"Introduction, Body, Conclusion",
"Abstract, Introduction, Methods, Results, Discussion, Conclusion",
"Executive Summary, Problem Statement, Analysis, Recommendations, Conclusion",
"Introduction, Literature Review, Methodology, Findings, Analysis, Conclusion",
"Plain Text",
],
value="Introduction, Body, Conclusion",
label="Structure",
elem_classes="input-highlight-turquoise",
interactive=True,
)
input_references = gr.Dropdown(
choices=[
"Academic journals",
"Industry reports",
"Government publications",
"News outlets",
"Expert interviews",
"Case studies",
],
value="News outlets",
label="References",
elem_classes="input-highlight-pink",
)
input_num_examples = gr.Dropdown(
choices=["1-2", "3-4", "5+"],
value="1-2",
label="Number of Examples/Case Studies",
elem_classes="input-highlight-yellow",
)
input_conclusion = gr.Dropdown(
choices=["Summary", "Call to Action", "Future Outlook", "Thought-provoking Question"],
value="Call to Action",
label="Conclusion Type",
elem_classes="input-highlight-turquoise",
)
gr.Markdown("# Search Options", elem_classes="text-center text-3xl mb-6")
google_default = False
with gr.Row():
google_search_check = gr.Checkbox(
label="Enable Internet Search For Recent Sources", value=google_default
)
with gr.Group(visible=google_default) as search_options:
with gr.Row():
include_sites = gr.Textbox(
label="Include Specific Websites",
placeholder="Enter comma-separated keywords",
elem_classes="input-highlight-yellow",
)
with gr.Row():
exclude_sites = gr.Textbox(
label="Exclude Specific Websites",
placeholder="Enter comma-separated keywords",
elem_classes="input-highlight-yellow",
)
with gr.Row():
domains_to_include = gr.Dropdown(
domain_list,
value=domain_list,
multiselect=True,
label="Domains To Include",
)
with gr.Row():
month_from = gr.Dropdown(
choices=months,
label="From Month",
value="January",
interactive=True,
)
day_from = gr.Textbox(label="From Day", value="01")
year_from = gr.Textbox(label="From Year", value="2000")
with gr.Row():
month_to = gr.Dropdown(
choices=months,
label="To Month",
value=d1[1],
interactive=True,
)
day_to = gr.Textbox(label="To Day", value=d1[0])
year_to = gr.Textbox(label="To Year", value=d1[2])
gr.Markdown("# Add Optional PDF Files with Information", elem_classes="text-center text-3xl mb-6")
pdf_file_input = gr.File(label="Upload PDF(s)", file_count="multiple", file_types=[".pdf"])
"""
# NOTE: HIDE AI MODEL SELECTION
with gr.Group():
gr.Markdown("## AI Model Configuration", elem_classes="text-xl mb-4")
ai_generator = gr.Dropdown(
choices=[
"OpenAI GPT 4",
"OpenAI GPT 4o",
"OpenAI GPT 4o Mini",
"Claude Sonnet 3.5",
"Gemini 1.5 Pro",
"LLaMA 3",
],
value="OpenAI GPT 4o Mini",
label="AI Model",
elem_classes="input-highlight-pink",
)
input_api = gr.Textbox(label="API Key", visible=False)
ai_generator.change(update_visibility_api, ai_generator, input_api)
"""
generate_btn = gr.Button("Generate Article", variant="primary")
with gr.Column(scale=3):
with gr.Tab("Text Generator"):
output_article = gr.Textbox(label="Generated Article", lines=20)
ai_comments = gr.Textbox(
label="Add comments to help edit generated text", interactive=True, visible=False
)
regenerate_btn = gr.Button("Regenerate Article", variant="primary", visible=False)
ai_detector_dropdown = gr.Radio(
choices=ai_check_options, label="Select AI Detector", value="Polygraf AI"
)
ai_check_btn = gr.Button("AI Check")
with gr.Accordion("AI Detection Results", open=True):
ai_check_result = gr.Label(label="AI Check Result")
mc_check_result = gr.Label(label="Creator Check Result")
highlighted_text = gr.HTML(label="Sentence Breakdown", visible=False)
with gr.Accordion("Advanced Humanizer Settings", open=False):
with gr.Row():
model_dropdown = gr.Radio(
choices=["Standard Model", "Advanced Model (Beta)"],
value="Advanced Model (Beta)",
label="Humanizer Model Version",
)
with gr.Row():
temperature_slider = gr.Slider(
minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Temperature"
)
top_k_slider = gr.Slider(minimum=0, maximum=300, step=25, value=40, label="Top k")
with gr.Row():
repetition_penalty_slider = gr.Slider(
minimum=1.0, maximum=2.0, step=0.1, value=1, label="Repetition Penalty"
)
length_penalty_slider = gr.Slider(
minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Length Penalty"
)
humanize_btn = gr.Button("Humanize")
# humanized_output = gr.Markdown(label="Humanized Article", value="\n\n\n\n", render=True)
# copy_to_input_btn = gr.Button("Copy to Input for AI Check")
with gr.Tab("History"):
history_chat = gr.Chatbot(label="Generation History", height=1000)
clear_history_btn = gr.Button("Clear History")
clear_history_btn.click(clear_history, outputs=[history, history_chat])
"""
# NOTE: REMOVED REFRESH BUTTON
refresh_button = gr.Button("Refresh History")
refresh_button.click(get_history, outputs=history_chat)
"""
def regenerate_visible(text):
if text:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def highlight_visible(text):
if text.startswith("Polygraf"):
return gr.update(visible=True)
else:
return gr.update(visible=False)
def search_visible(toggle):
if toggle:
return gr.update(visible=True)
else:
return gr.update(visible=False)
google_search_check.change(search_visible, inputs=google_search_check, outputs=search_options)
ai_detector_dropdown.change(highlight_visible, inputs=ai_detector_dropdown, outputs=highlighted_text)
output_article.change(regenerate_visible, inputs=output_article, outputs=ai_comments)
ai_comments.change(regenerate_visible, inputs=output_article, outputs=regenerate_btn)
ai_check_btn.click(highlight_visible, inputs=ai_detector_dropdown, outputs=highlighted_text)
# Update the default structure based on the selected format
# e.g. "Plain Text" for certain formats
input_format.change(fn=update_structure, inputs=input_format, outputs=input_structure)
model_dropdown.change(fn=update_temperature, inputs=model_dropdown, outputs=temperature_slider)
generate_btn.click(
fn=generate_and_format,
inputs=[
input_role,
input_topic,
input_context,
input_keywords,
input_length,
input_format,
input_writing_style,
input_tone,
input_user_category,
input_depth,
input_structure,
input_references,
input_num_examples,
input_conclusion,
# ai_generator,
# input_api,
google_search_check,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_include,
include_sites,
exclude_sites,
pdf_file_input,
history,
],
outputs=[output_article, history],
)
regenerate_btn.click(
fn=generate_and_format,
inputs=[
input_role,
input_topic,
input_context,
input_keywords,
input_length,
input_format,
input_writing_style,
input_tone,
input_user_category,
input_depth,
input_structure,
input_references,
input_num_examples,
input_conclusion,
# ai_generator,
# input_api,
google_search_check,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_include,
pdf_file_input,
history,
output_article,
include_sites,
exclude_sites,
ai_comments,
],
outputs=[output_article, history],
)
ai_check_btn.click(
fn=ai_check,
inputs=[output_article, ai_detector_dropdown],
outputs=[ai_check_result, highlighted_text, mc_check_result],
)
humanize_btn.click(
fn=humanize,
inputs=[
output_article,
model_dropdown,
temperature_slider,
repetition_penalty_slider,
top_k_slider,
length_penalty_slider,
history,
],
outputs=[output_article, history],
)
generate_btn.click(get_history, inputs=[history], outputs=[history_chat])
regenerate_btn.click(get_history, inputs=[history], outputs=[history_chat])
humanize_btn.click(get_history, inputs=[history], outputs=[history_chat])
return demo
if __name__ == "__main__":
demo = create_interface()
# demo.queue(
# max_size=2,
# default_concurrency_limit=2,
# ).launch(server_name="0.0.0.0", share=True, server_port=7890)
demo.launch(server_name="0.0.0.0")
|