Spaces:
Runtime error
Runtime error
File size: 9,670 Bytes
7edc5be 03fd59b 708f094 03fd59b 708f094 03fd59b 8f26ea6 03fd59b 8f26ea6 03fd59b 4b92a71 03fd59b e76dfe8 f6b1cb0 134b51f 03fd59b e1b0f65 8f26ea6 f716a54 8f26ea6 59fbf6a 708f094 4b92a71 708f094 e76dfe8 f6b1cb0 e76dfe8 f6b1cb0 e76dfe8 f6b1cb0 e76dfe8 f6b1cb0 e76dfe8 708f094 134b51f 708f094 43d4e83 59fbf6a 95168db 708f094 59fbf6a 708f094 43d4e83 03fd59b 708f094 59fbf6a 708f094 03fd59b e76dfe8 03fd59b 708f094 e76dfe8 708f094 e76dfe8 f716a54 e76dfe8 708f094 f6b1cb0 708f094 f6b1cb0 708f094 f6b1cb0 708f094 4b92a71 f6b1cb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_core.documents import Document
from langchain_community.embeddings.sentence_transformer import (
SentenceTransformerEmbeddings,
)
from langchain.schema import StrOutputParser
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_anthropic import ChatAnthropic
from dotenv import load_dotenv
from langchain_core.output_parsers import XMLOutputParser
from langchain.prompts import ChatPromptTemplate
import re
load_dotenv()
# suppress grpc and glog logs for gemini
os.environ["GRPC_VERBOSITY"] = "ERROR"
os.environ["GLOG_minloglevel"] = "2"
# RAG parameters
CHUNK_SIZE = 1024
CHUNK_OVERLAP = CHUNK_SIZE // 8
K = 10
FETCH_K = 20
llm_model_translation = {
"LLaMA 3": "llama3-70b-8192",
"OpenAI GPT 4o Mini": "gpt-4o-mini",
"OpenAI GPT 4o": "gpt-4o",
"OpenAI GPT 4": "gpt-4-turbo",
"Gemini 1.5 Pro": "gemini-1.5-pro",
"Claude Sonnet 3.5": "claude-3-5-sonnet-20240620",
}
llm_classes = {
"llama3-70b-8192": ChatGroq,
"gpt-4o-mini": ChatOpenAI,
"gpt-4o": ChatOpenAI,
"gpt-4-turbo": ChatOpenAI,
"gemini-1.5-pro": ChatGoogleGenerativeAI,
"claude-3-5-sonnet-20240620": ChatAnthropic,
}
xml_system = """You're a helpful AI assistant. Given a user prompt and some related sources, fulfill all the requirements \
of the prompt and provide citations. If a chunk of the generated text does not use any of the sources (for example, \
introductions or general text), don't put a citation for that chunk and just leave "citations" section empty. Otherwise, \
list all sources used for that chunk of the text. Remember, don't add inline citations in the text itself in any circumstant.
Add all citations to the separate citations section. Use explicit new lines in the text to show paragraph splits. For each chunk use this example format:
<chunk>
<text>This is a sample text chunk....</text>
<citations>
<citation>1</citation>
<citation>3</citation>
...
</citations>
</chunk>
If the prompt asks for a reference section, add it in a chunk without any citations
Return a citation for every quote across all articles that justify the text. Remember use the following format for your final output:
<cited_text>
<chunk>
<text></text>
<citations>
<citation><source_id></source_id></citation>
...
</citations>
</chunk>
<chunk>
<text></text>
<citations>
<citation><source_id></source_id></citation>
...
</citations>
</chunk>
...
</cited_text>
The entire text should be wrapped in one cited_text. For References section (if asked by prompt), don't add citations.
For source id, give a valid integer alone without a key.
Here are the sources:{context}"""
xml_prompt = ChatPromptTemplate.from_messages(
[("system", xml_system), ("human", "{input}")]
)
def format_docs_xml(docs: list[Document]) -> str:
formatted = []
for i, doc in enumerate(docs):
doc_str = f"""\
<source id=\"{i}\">
<path>{doc.metadata['source']}</path>
<article_snippet>{doc.page_content}</article_snippet>
</source>"""
formatted.append(doc_str)
return "\n\n<sources>" + "\n".join(formatted) + "</sources>"
def get_doc_content(docs, id):
return docs[id].page_content
def remove_citations(text):
text = re.sub(r'<\d+>', '', text)
text = re.sub(r'[\d+]', '', text)
return text
def process_cited_text(data, docs):
# Initialize variables for the combined text and a dictionary for citations
combined_text = ""
citations = {}
# Iterate through the cited_text list
if 'cited_text' in data:
for item in data['cited_text']:
chunk_text = item['chunk'][0]['text']
combined_text += chunk_text
citation_ids = []
# Process the citations for the chunk
if item['chunk'][1]['citations']:
for c in item['chunk'][1]['citations']:
if c and 'citation' in c:
citation = c['citation']
if isinstance(citation, dict) and "source_id" in citation:
citation = citation['source_id']
if isinstance(citation, str):
try:
citation_ids.append(int(citation))
except ValueError:
pass # Handle cases where the string is not a valid integer
if citation_ids:
citation_texts = [f"<{cid}>" for cid in citation_ids]
combined_text += " " + "".join(citation_texts)
combined_text += "\n\n"
# Store unique citations in a dictionary
for citation_id in citation_ids:
if citation_id not in citations:
citations[citation_id] = {'source': docs[citation_id].metadata['source'], 'content': docs[citation_id].page_content}
return combined_text.strip(), citations
def citations_to_html(citations):
if citations:
# Generate the HTML for the unique citations
html_content = ""
for citation_id, citation_info in citations.items():
html_content += (
f"<li><strong>Source ID:</strong> {citation_id}<br>"
f"<strong>Path:</strong> {citation_info['source']}<br>"
f"<strong>Page Content:</strong> {citation_info['content']}</li>"
)
html_content += "</ul></body></html>"
return html_content
return ""
def load_llm(model: str, api_key: str, temperature: float = 1.0, max_length: int = 2048):
model_name = llm_model_translation.get(model)
llm_class = llm_classes.get(model_name)
if not llm_class:
raise ValueError(f"Model {model} not supported.")
try:
llm = llm_class(model_name=model_name, temperature=temperature, max_tokens=max_length)
except Exception as e:
print(f"An error occurred: {e}")
llm = None
return llm
def create_db_with_langchain(path: list[str], url_content: dict):
all_docs = []
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
embedding_function = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
if path:
for file in path:
loader = PyMuPDFLoader(file)
data = loader.load()
# split it into chunks
docs = text_splitter.split_documents(data)
all_docs.extend(docs)
if url_content:
for url, content in url_content.items():
doc = Document(page_content=content, metadata={"source": url})
# split it into chunks
docs = text_splitter.split_documents([doc])
all_docs.extend(docs)
# print docs
for idx, doc in enumerate(all_docs):
print(f"Doc: {idx} | Length = {len(doc.page_content)}")
assert len(all_docs) > 0, "No PDFs or scrapped data provided"
db = Chroma.from_documents(all_docs, embedding_function)
return db
def generate_rag(
prompt: str,
topic: str,
model: str,
url_content: dict,
path: list[str],
temperature: float = 1.0,
max_length: int = 2048,
api_key: str = "",
sys_message="",
):
llm = load_llm(model, api_key, temperature, max_length)
if llm is None:
print("Failed to load LLM. Aborting operation.")
return None
db = create_db_with_langchain(path, url_content)
retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": K, "fetch_k": FETCH_K})
rag_prompt = hub.pull("rlm/rag-prompt")
def format_docs(docs):
if all(isinstance(doc, Document) for doc in docs):
return "\n\n".join(doc.page_content for doc in docs)
else:
raise TypeError("All items in docs must be instances of Document.")
docs = retriever.get_relevant_documents(topic)
formatted_docs = format_docs_xml(docs)
rag_chain = (
RunnablePassthrough.assign(context=lambda _: formatted_docs)
| xml_prompt
| llm
| XMLOutputParser()
)
result = rag_chain.invoke({"input": prompt})
text, citations = process_cited_text(result, docs)
return text, citations
def generate_base(
prompt: str, topic: str, model: str, temperature: float, max_length: int, api_key: str, sys_message=""
):
llm = load_llm(model, api_key, temperature, max_length)
if llm is None:
print("Failed to load LLM. Aborting operation.")
return None, None
try:
output = llm.invoke(prompt).content
return output, None
except Exception as e:
print(f"An error occurred while running the model: {e}")
return None, None
def generate(
prompt: str,
topic: str,
model: str,
url_content: dict,
path: list[str],
temperature: float = 1.0,
max_length: int = 2048,
api_key: str = "",
sys_message="",
):
if path or url_content:
return generate_rag(prompt, topic, model, url_content, path, temperature, max_length, api_key, sys_message)
else:
return generate_base(prompt, topic, model, temperature, max_length, api_key, sys_message)
|