File size: 9,670 Bytes
7edc5be
03fd59b
708f094
03fd59b
 
 
708f094
03fd59b
8f26ea6
03fd59b
 
8f26ea6
03fd59b
4b92a71
 
 
03fd59b
e76dfe8
 
f6b1cb0
134b51f
03fd59b
e1b0f65
8f26ea6
f716a54
 
 
8f26ea6
59fbf6a
 
 
 
 
708f094
 
 
 
 
 
 
4b92a71
 
708f094
 
 
 
 
 
 
 
 
 
e76dfe8
 
f6b1cb0
 
 
 
 
 
 
 
 
 
 
 
 
e76dfe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b1cb0
 
 
 
 
 
e76dfe8
 
 
 
 
f6b1cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e76dfe8
 
 
 
 
f6b1cb0
 
 
 
 
 
 
 
 
 
 
 
e76dfe8
 
708f094
 
 
 
 
 
 
 
 
 
 
 
134b51f
708f094
43d4e83
59fbf6a
95168db
708f094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59fbf6a
 
 
 
708f094
43d4e83
03fd59b
 
 
708f094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59fbf6a
708f094
03fd59b
 
e76dfe8
 
 
 
03fd59b
708f094
e76dfe8
 
708f094
e76dfe8
 
 
 
f716a54
e76dfe8
 
 
708f094
 
 
 
 
 
 
f6b1cb0
708f094
 
f6b1cb0
708f094
 
f6b1cb0
708f094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b92a71
f6b1cb0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_core.documents import Document
from langchain_community.embeddings.sentence_transformer import (
    SentenceTransformerEmbeddings,
)
from langchain.schema import StrOutputParser
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_anthropic import ChatAnthropic
from dotenv import load_dotenv
from langchain_core.output_parsers import XMLOutputParser
from langchain.prompts import ChatPromptTemplate
import re

load_dotenv()

# suppress grpc and glog logs for gemini
os.environ["GRPC_VERBOSITY"] = "ERROR"
os.environ["GLOG_minloglevel"] = "2"

# RAG parameters
CHUNK_SIZE = 1024
CHUNK_OVERLAP = CHUNK_SIZE // 8
K = 10
FETCH_K = 20

llm_model_translation = {
    "LLaMA 3": "llama3-70b-8192",
    "OpenAI GPT 4o Mini": "gpt-4o-mini",
    "OpenAI GPT 4o": "gpt-4o",
    "OpenAI GPT 4": "gpt-4-turbo",
    "Gemini 1.5 Pro": "gemini-1.5-pro",
    "Claude Sonnet 3.5": "claude-3-5-sonnet-20240620",
}

llm_classes = {
    "llama3-70b-8192": ChatGroq,
    "gpt-4o-mini": ChatOpenAI,
    "gpt-4o": ChatOpenAI,
    "gpt-4-turbo": ChatOpenAI,
    "gemini-1.5-pro": ChatGoogleGenerativeAI,
    "claude-3-5-sonnet-20240620": ChatAnthropic,
}


xml_system = """You're a helpful AI assistant. Given a user prompt and some related sources, fulfill all the requirements \
of the prompt and provide citations. If a chunk of the generated text does not use any of the sources (for example, \
introductions or general text), don't put a citation for that chunk and just leave "citations" section empty. Otherwise, \
list all sources used for that chunk of the text. Remember, don't add inline citations in the text itself in any circumstant.
Add all citations to the separate citations section. Use explicit new lines in the text to show paragraph splits. For each chunk use this example format:
<chunk>
    <text>This is a sample text chunk....</text>
    <citations>
        <citation>1</citation>
        <citation>3</citation>
        ...
    </citations>
</chunk>
If the prompt asks for a reference section, add it in a chunk without any citations
Return a citation for every quote across all articles that justify the text. Remember use the following format for your final output:
<cited_text>
    <chunk>
        <text></text>
        <citations>
            <citation><source_id></source_id></citation>
            ...
        </citations>
    </chunk>
    <chunk>
        <text></text>
        <citations>
            <citation><source_id></source_id></citation>
            ...
        </citations>
    </chunk>
    ...
</cited_text>
The entire text should be wrapped in one cited_text. For References section (if asked by prompt), don't add citations.
For source id, give a valid integer alone without a key.
Here are the sources:{context}"""
xml_prompt = ChatPromptTemplate.from_messages(
    [("system", xml_system), ("human", "{input}")]
)

def format_docs_xml(docs: list[Document]) -> str:
    formatted = []
    for i, doc in enumerate(docs):
        doc_str = f"""\
    <source id=\"{i}\">
        <path>{doc.metadata['source']}</path>
        <article_snippet>{doc.page_content}</article_snippet>
    </source>"""
        formatted.append(doc_str)
    return "\n\n<sources>" + "\n".join(formatted) + "</sources>"


def get_doc_content(docs, id):
    return docs[id].page_content


def remove_citations(text):
    text = re.sub(r'<\d+>', '', text)
    text = re.sub(r'[\d+]', '', text)
    return text


def process_cited_text(data, docs):
    # Initialize variables for the combined text and a dictionary for citations
    combined_text = ""
    citations = {}
    # Iterate through the cited_text list
    if 'cited_text' in data:
        for item in data['cited_text']:
            chunk_text = item['chunk'][0]['text']
            combined_text += chunk_text
            citation_ids = []
            # Process the citations for the chunk
            if item['chunk'][1]['citations']:
                for c in item['chunk'][1]['citations']:
                    if c and 'citation' in c:
                        citation = c['citation']
                        if isinstance(citation, dict) and "source_id" in citation:
                            citation = citation['source_id']
                        if isinstance(citation, str):
                            try:
                                citation_ids.append(int(citation))
                            except ValueError:
                                pass # Handle cases where the string is not a valid integer
            if citation_ids:
                citation_texts = [f"<{cid}>" for cid in citation_ids]
                combined_text += " " + "".join(citation_texts)
            combined_text += "\n\n"
            # Store unique citations in a dictionary
            for citation_id in citation_ids:
                if citation_id not in citations:
                    citations[citation_id] = {'source': docs[citation_id].metadata['source'], 'content': docs[citation_id].page_content}

    return combined_text.strip(), citations


def citations_to_html(citations):
    if citations:
        # Generate the HTML for the unique citations
        html_content = ""
        for citation_id, citation_info in citations.items():
            html_content += (
                f"<li><strong>Source ID:</strong> {citation_id}<br>"
                f"<strong>Path:</strong> {citation_info['source']}<br>"
                f"<strong>Page Content:</strong> {citation_info['content']}</li>"
            )
        html_content += "</ul></body></html>"
        return html_content
    return ""


def load_llm(model: str, api_key: str, temperature: float = 1.0, max_length: int = 2048):
    model_name = llm_model_translation.get(model)
    llm_class = llm_classes.get(model_name)
    if not llm_class:
        raise ValueError(f"Model {model} not supported.")
    try:
        llm = llm_class(model_name=model_name, temperature=temperature, max_tokens=max_length)
    except Exception as e:
        print(f"An error occurred: {e}")
        llm = None
    return llm


def create_db_with_langchain(path: list[str], url_content: dict):
    all_docs = []
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
    embedding_function = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
    if path:
        for file in path:
            loader = PyMuPDFLoader(file)
            data = loader.load()
            # split it into chunks
            docs = text_splitter.split_documents(data)
            all_docs.extend(docs)

    if url_content:
        for url, content in url_content.items():
            doc = Document(page_content=content, metadata={"source": url})
            # split it into chunks
            docs = text_splitter.split_documents([doc])
            all_docs.extend(docs)

    # print docs
    for idx, doc in enumerate(all_docs):
        print(f"Doc: {idx} | Length = {len(doc.page_content)}")

    assert len(all_docs) > 0, "No PDFs or scrapped data provided"
    db = Chroma.from_documents(all_docs, embedding_function)
    return db


def generate_rag(
    prompt: str,
    topic: str,
    model: str,
    url_content: dict,
    path: list[str],
    temperature: float = 1.0,
    max_length: int = 2048,
    api_key: str = "",
    sys_message="",
):
    llm = load_llm(model, api_key, temperature, max_length)
    if llm is None:
        print("Failed to load LLM. Aborting operation.")
        return None
    db = create_db_with_langchain(path, url_content)
    retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": K, "fetch_k": FETCH_K})
    rag_prompt = hub.pull("rlm/rag-prompt")

    def format_docs(docs):
        if all(isinstance(doc, Document) for doc in docs):
            return "\n\n".join(doc.page_content for doc in docs)
        else:
            raise TypeError("All items in docs must be instances of Document.")

    docs = retriever.get_relevant_documents(topic)

    formatted_docs = format_docs_xml(docs)
    rag_chain = (
        RunnablePassthrough.assign(context=lambda _: formatted_docs)
        | xml_prompt
        | llm
        | XMLOutputParser()
    )
    result = rag_chain.invoke({"input": prompt})
    text, citations = process_cited_text(result, docs)
    return text, citations

def generate_base(
    prompt: str, topic: str, model: str, temperature: float, max_length: int, api_key: str, sys_message=""
):
    llm = load_llm(model, api_key, temperature, max_length)
    if llm is None:
        print("Failed to load LLM. Aborting operation.")
        return None, None
    try:
        output = llm.invoke(prompt).content
        return output, None
    except Exception as e:
        print(f"An error occurred while running the model: {e}")
        return None, None


def generate(
    prompt: str,
    topic: str,
    model: str,
    url_content: dict,
    path: list[str],
    temperature: float = 1.0,
    max_length: int = 2048,
    api_key: str = "",
    sys_message="",
):
    if path or url_content:
        return generate_rag(prompt, topic, model, url_content, path, temperature, max_length, api_key, sys_message)
    else:
        return generate_base(prompt, topic, model, temperature, max_length, api_key, sys_message)