article_writer / app.py
eljanmahammadli's picture
speed up humanizer: batch generation
a54c1ef
raw
history blame
32 kB
"""
nohup python3 app.py &
"""
import re
import requests
from typing import Dict
from collections import defaultdict
from datetime import date
import gradio as gr
from scipy.special import softmax
import language_tool_python
import nltk
import torch
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from utils import remove_special_characters
from plagiarism import google_search, months, domain_list, build_date
from humanize import paraphrase_text, device
from ai_generate import generate
print(f"Using device: {device}")
models = {
"Polygraf AI (Base Model)": AutoModelForSequenceClassification.from_pretrained(
"polygraf-ai/bc-roberta-openai-2sent"
).to(device),
"Polygraf AI (Advanced Model)": AutoModelForSequenceClassification.from_pretrained(
"polygraf-ai/bc_combined_3sent"
).to(device),
}
tokenizers = {
"Polygraf AI (Base Model)": AutoTokenizer.from_pretrained("polygraf-ai/bc-roberta-openai-2sent"),
"Polygraf AI (Advanced Model)": AutoTokenizer.from_pretrained("polygraf-ai/bc_combined_3sent"),
}
# grammar correction tool
tool = language_tool_python.LanguageTool("en-US")
# Function to move model to the appropriate device
def to_device(model):
return model.to(device)
def copy_to_input(text):
return text
def remove_bracketed_numbers(text):
pattern = r"^\[\d+\]"
cleaned_text = re.sub(pattern, "", text)
return cleaned_text
def clean_text(text: str) -> str:
paragraphs = text.split("\n\n")
cleaned_paragraphs = []
for paragraph in paragraphs:
cleaned = re.sub(r"\s+", " ", paragraph).strip()
cleaned = re.sub(r"(?<=\.) ([a-z])", lambda x: x.group(1).upper(), cleaned)
cleaned_paragraphs.append(cleaned)
return "\n".join(cleaned_paragraphs)
def split_text_from_refs(text: str, sep="\n"):
lines = text.split("\n")
references = []
article_text = []
index_pattern = re.compile(r"\[(\d+)\]")
in_references = False
for line in lines:
if line.strip().lower() == "references" or line.strip().lower() == "references:":
in_references = True
continue
if line.strip().lower().startswith("references:"):
in_references = True
if in_references:
matches = index_pattern.split(line)
for match in matches:
if match.strip() and not match.isdigit() and not match.strip().lower().startswith("references:"):
references.append(match.strip())
else:
article_text.append(line)
formatted_refs = []
for i, ref in enumerate(references, 1):
ref = remove_bracketed_numbers(ref)
formatted_refs.append(f"[{i}] {ref}{sep}")
return "\n\n".join(article_text), f"{sep}{sep}References:{sep}" + f"{sep}".join(formatted_refs)
def ends_with_references(text):
# Define a regular expression pattern for variations of "References:"
pattern = re.compile(r"\b[Rr]eferences:\s*$", re.IGNORECASE | re.MULTILINE)
# Check if the text ends with any form of "References:"
return bool(pattern.search(text.strip()))
def format_and_correct_language_check(text: str) -> str:
return tool.correct(text)
def predict(model, tokenizer, text):
text = remove_special_characters(text)
bc_token_size = 256
with torch.no_grad():
model.eval()
tokens = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=bc_token_size,
return_tensors="pt",
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
output_norm = {"HUMAN": output_norm[0], "AI": output_norm[1]}
return output_norm
def ai_generated_test(text, model="BC Original"):
return predict(models[model], tokenizers[model], text)
def detection_polygraf(text, model="BC Original"):
# sentences = split_into_sentences(text)
sentences = nltk.sent_tokenize(text)
num_sentences = len(sentences)
scores = defaultdict(list)
overall_scores = []
# Process each chunk of 3 sentences and store the score for each sentence in the chunk
for i in range(num_sentences):
chunk = " ".join(sentences[i : i + 3])
if chunk:
# result = classifier(chunk)
result = ai_generated_test(chunk, model)
score = result["AI"]
for j in range(i, min(i + 3, num_sentences)):
scores[j].append(score)
# Calculate the average score for each sentence and apply color coding
paragraphs = text.split("\n")
paragraphs = [s for s in paragraphs if s.strip()]
colored_paragraphs = []
i = 0
for paragraph in paragraphs:
temp_sentences = nltk.sent_tokenize(paragraph)
colored_sentences = []
for sentence in temp_sentences:
if scores[i]:
avg_score = sum(scores[i]) / len(scores[i])
if avg_score >= 0.65:
colored_sentence = f"<span style='background-color:red;'>{sentence}</span>"
else:
colored_sentence = sentence
colored_sentences.append(colored_sentence)
overall_scores.append(avg_score)
i = i + 1
combined_sentences = " ".join(colored_sentences)
colored_paragraphs.append(combined_sentences)
overall_score = sum(overall_scores) / len(overall_scores)
overall_score = {"HUMAN": 1 - overall_score, "AI": overall_score}
return overall_score, "<br><br>".join(colored_paragraphs)
ai_check_options = [
"Polygraf AI (Base Model)",
"Polygraf AI (Advanced Model)",
]
def ai_generated_test_sapling(text: str) -> Dict:
response = requests.post(
"https://api.sapling.ai/api/v1/aidetect", json={"key": "60L9BPSVPIIOEZM0CD1DQWRBPJIUR7SB", "text": f"{text}"}
)
return {"AI": response.json()["score"], "HUMAN": 1 - response.json()["score"]}
class GPT2PPL:
def __init__(self):
self.device = device
self.model = to_device(GPT2LMHeadModel.from_pretrained("gpt2"))
self.tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
def __call__(self, text):
encodings = self.tokenizer(text, return_tensors="pt")
encodings = {k: v.to(self.device) for k, v in encodings.items()}
max_length = self.model.config.n_positions
stride = 512
seq_len = encodings.input_ids.size(1)
nlls = []
for i in range(0, seq_len, stride):
begin_loc = max(i + stride - max_length, 0)
end_loc = min(i + stride, seq_len)
trg_len = end_loc - i
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(self.device)
target_ids = input_ids.clone()
target_ids[:, :-trg_len] = -100
with torch.no_grad():
outputs = self.model(input_ids, labels=target_ids)
neg_log_likelihood = outputs.loss * trg_len
nlls.append(neg_log_likelihood)
ppl = torch.exp(torch.stack(nlls).sum() / end_loc)
return {"AI": float(ppl), "HUMAN": 1 - float(ppl)}
def ai_generated_test_gptzero(text):
gptzero_model = GPT2PPL()
result = gptzero_model(text)
return result, None
def highlighter_polygraf(text, model="Polygraf AI (Base Model)"):
body, references = split_text_from_refs(text, "<br>")
score, text = detection_polygraf(text=body, model=model)
text = text + "<br>" + references
return score, text
def ai_check(text: str, option: str):
if option.startswith("Polygraf AI"):
return highlighter_polygraf(text, option)
elif option == "Sapling AI":
return ai_generated_test_sapling(text)
elif option == "GPTZero":
return ai_generated_test_gptzero(text)
else:
return highlighter_polygraf(text, option)
def generate_prompt(settings: Dict[str, str]) -> str:
prompt = f"""
I am a {settings['role']}
Write a {settings['article_length']} words (around) {settings['format']} on {settings['topic']}.
Style and Tone:
- Writing style: {settings['writing_style']}
- Tone: {settings['tone']}
- Target audience: {settings['user_category']}
Content:
- Depth: {settings['depth_of_content']}
- Structure: {', '.join(settings['structure'])}
Keywords to incorporate:
{', '.join(settings['keywords'])}
Additional requirements:
- Don't start with "Here is a...", start with the requested text directly
- Include {settings['num_examples']} relevant examples or case studies
- Incorporate data or statistics from {', '.join(settings['references'])}
- End with a {settings['conclusion_type']} conclusion
- Add a "References" section in the format "References:\n" at the end with at least 3 credible sources, formatted as [1], [2], etc. with each source on their own line
- Do not make any headline, title bold.
{settings['sources']}
Ensure proper paragraph breaks for better readability.
Avoid any references to artificial intelligence, language models, or the fact that this is generated by an AI, and do not mention something like here is the article etc.
"""
return prompt
def regenerate_prompt(settings: Dict[str, str]) -> str:
prompt = f"""
I am a {settings['role']}
"{settings['generated_article']}"
Edit the given text based on user comments.
Comments:
- Don't start with "Here is a...", start with the requested text directly
- {settings['user_comments']}
- The original content should not be changed. Make minor modifications based on user comments above.
- Keep the references the same as the given text in the same format.
- Do not make any headline, title bold.
{settings['sources']}
Ensure proper paragraph breaks for better readability.
Avoid any references to artificial intelligence, language models, or the fact that this is generated by an AI, and do not mention something like here is the article etc.
"""
return prompt
def generate_article(
input_role: str,
topic: str,
keywords: str,
article_length: str,
format: str,
writing_style: str,
tone: str,
user_category: str,
depth_of_content: str,
structure: str,
references: str,
num_examples: str,
conclusion_type: str,
ai_model: str,
content_string: str,
# api_key: str = None,
pdf_file_input=None,
generated_article: str = None,
user_comments: str = None,
) -> str:
settings = {
"role": input_role,
"topic": topic,
"keywords": [k.strip() for k in keywords.split(",")],
"article_length": article_length,
"format": format,
"writing_style": writing_style,
"tone": tone,
"user_category": user_category,
"depth_of_content": depth_of_content,
"structure": [s.strip() for s in structure.split(",")],
"references": [r.strip() for r in references.split(",")],
"num_examples": num_examples,
"conclusion_type": conclusion_type,
"sources": content_string,
"generated_article": generated_article,
"user_comments": user_comments,
}
if generated_article:
prompt = regenerate_prompt(settings)
else:
prompt = generate_prompt(settings)
print("Generated Prompt...\n", prompt)
article = generate(
prompt,
ai_model,
pdf_file_input, # api_key
)
return clean_text(article)
def humanize(
text: str,
model: str,
temperature: float = 1.2,
repetition_penalty: float = 1,
top_k: int = 50,
length_penalty: float = 1,
) -> str:
body, references = split_text_from_refs(text)
result = paraphrase_text(
text=body,
model_name=model,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_k=top_k,
length_penalty=length_penalty,
)
result = result + "\n\n" + references
return format_and_correct_language_check(result)
def update_visibility_api(model: str):
if model in ["OpenAI GPT 3.5", "OpenAI GPT 4"]:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def format_references(text: str) -> str:
lines = text.split("\n")
references = []
article_text = []
index_pattern = re.compile(r"\[(\d+)\]")
in_references = False
for line in lines:
if line.strip().lower() == "references" or line.strip().lower() == "references:":
in_references = True
continue
if line.strip().lower().startswith("references:"):
in_references = True
if in_references:
matches = index_pattern.split(line)
for match in matches:
if match.strip() and not match.isdigit() and not match.strip().lower().startswith("references:"):
references.append(match.strip())
else:
article_text.append(line)
formatted_refs = []
for i, ref in enumerate(references, 1):
ref = remove_bracketed_numbers(ref)
formatted_refs.append(f"[{i}] {ref}\n")
return "\n\n".join(article_text) + "\n\nReferences:\n" + "\n".join(formatted_refs)
def generate_and_format(
input_role,
topic,
keywords,
article_length,
format,
writing_style,
tone,
user_category,
depth_of_content,
structure,
references,
num_examples,
conclusion_type,
ai_model,
# api_key,
google_search_check,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_include,
include_sites,
exclude_sites,
pdf_file_input,
generated_article: str = None,
user_comments: str = None,
):
content_string = ""
if google_search_check:
date_from = build_date(year_from, month_from, day_from)
date_to = build_date(year_to, month_to, day_to)
sorted_date = f"date:r:{date_from}:{date_to}"
final_query = topic
if include_sites:
site_queries = [f"site:{site.strip()}" for site in include_sites.split(",")]
final_query += " " + " OR ".join(site_queries)
if exclude_sites:
exclude_queries = [f"-site:{site.strip()}" for site in exclude_sites.split(",")]
final_query += " " + " ".join(exclude_queries)
print(f"Google Search Query: {final_query}")
url_content = google_search(final_query, sorted_date, domains_to_include)
content_string = "\n".join(
f"{url.strip()}: \n{content.strip()[:2000]}" for url, content in url_content.items()
)
content_string = (
"Use the trusted information here from the URLs and add them as References:\n" + content_string
)
article = generate_article(
input_role,
topic,
keywords,
article_length,
format,
writing_style,
tone,
user_category,
depth_of_content,
structure,
references,
num_examples,
conclusion_type,
ai_model,
content_string,
# api_key,
pdf_file_input,
generated_article,
user_comments,
)
if ends_with_references(article) and url_content is not None:
for url in url_content.keys():
article += f"\n{url}"
return format_references(article)
def create_interface():
with gr.Blocks(
theme=gr.themes.Default(
primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.yellow, neutral_hue=gr.themes.colors.gray
),
css="""
.input-highlight-pink block_label {background-color: #008080}
""",
) as demo:
today = date.today()
# dd/mm/YY
d1 = today.strftime("%d/%B/%Y")
d1 = d1.split("/")
gr.Markdown("# Polygraf AI Content Writer", elem_classes="text-center text-3xl mb-6")
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("## Article Configuration", elem_classes="text-xl mb-4")
input_role = gr.Textbox(label="I am a", placeholder="Enter your role", value="Student")
input_topic = gr.Textbox(
label="Topic",
placeholder="Enter the main topic of your article",
elem_classes="input-highlight-pink",
)
input_keywords = gr.Textbox(
label="Keywords",
placeholder="Enter comma-separated keywords",
elem_classes="input-highlight-yellow",
)
with gr.Row():
input_format = gr.Dropdown(
choices=[
"Article",
"Essay",
"Blog post",
"Report",
"Research paper",
"News article",
"White paper",
"LinkedIn post",
"X (Twitter) post",
"Instagram Video Content",
"TikTok Video Content",
"Facebook post",
],
value="Article",
label="Format",
elem_classes="input-highlight-turquoise",
)
input_length = gr.Slider(
minimum=50,
maximum=5000,
step=50,
value=300,
label="Article Length",
elem_classes="input-highlight-pink",
)
with gr.Row():
input_writing_style = gr.Dropdown(
choices=[
"Formal",
"Informal",
"Technical",
"Conversational",
"Journalistic",
"Academic",
"Creative",
],
value="Formal",
label="Writing Style",
elem_classes="input-highlight-yellow",
)
input_tone = gr.Dropdown(
choices=["Friendly", "Professional", "Neutral", "Enthusiastic", "Skeptical", "Humorous"],
value="Professional",
label="Tone",
elem_classes="input-highlight-turquoise",
)
input_user_category = gr.Dropdown(
choices=[
"Students",
"Professionals",
"Researchers",
"General Public",
"Policymakers",
"Entrepreneurs",
],
value="General Public",
label="Target Audience",
elem_classes="input-highlight-pink",
)
input_depth = gr.Dropdown(
choices=[
"Surface-level overview",
"Moderate analysis",
"In-depth research",
"Comprehensive study",
],
value="Moderate analysis",
label="Depth of Content",
elem_classes="input-highlight-yellow",
)
input_structure = gr.Dropdown(
choices=[
"Introduction, Body, Conclusion",
"Abstract, Introduction, Methods, Results, Discussion, Conclusion",
"Executive Summary, Problem Statement, Analysis, Recommendations, Conclusion",
"Introduction, Literature Review, Methodology, Findings, Analysis, Conclusion",
],
value="Introduction, Body, Conclusion",
label="Structure",
elem_classes="input-highlight-turquoise",
)
input_references = gr.Dropdown(
choices=[
"Academic journals",
"Industry reports",
"Government publications",
"News outlets",
"Expert interviews",
"Case studies",
],
value="News outlets",
label="References",
elem_classes="input-highlight-pink",
)
input_num_examples = gr.Dropdown(
choices=["1-2", "3-4", "5+"],
value="1-2",
label="Number of Examples/Case Studies",
elem_classes="input-highlight-yellow",
)
input_conclusion = gr.Dropdown(
choices=["Summary", "Call to Action", "Future Outlook", "Thought-provoking Question"],
value="Call to Action",
label="Conclusion Type",
elem_classes="input-highlight-turquoise",
)
gr.Markdown("# Search Options", elem_classes="text-center text-3xl mb-6")
with gr.Row():
google_search_check = gr.Checkbox(label="Enable Google Search For Recent Sources", value=True)
with gr.Group(visible=True) as search_options:
with gr.Row():
include_sites = gr.Textbox(
label="Include Specific Websites",
placeholder="Enter comma-separated keywords",
elem_classes="input-highlight-yellow",
)
with gr.Row():
exclude_sites = gr.Textbox(
label="Exclude Specific Websites",
placeholder="Enter comma-separated keywords",
elem_classes="input-highlight-yellow",
)
with gr.Row():
domains_to_include = gr.Dropdown(
domain_list,
value=domain_list,
multiselect=True,
label="Domains To Include",
)
with gr.Row():
month_from = gr.Dropdown(
choices=months,
label="From Month",
value="January",
interactive=True,
)
day_from = gr.Textbox(label="From Day", value="01")
year_from = gr.Textbox(label="From Year", value="2000")
with gr.Row():
month_to = gr.Dropdown(
choices=months,
label="To Month",
value=d1[1],
interactive=True,
)
day_to = gr.Textbox(label="To Day", value=d1[0])
year_to = gr.Textbox(label="To Year", value=d1[2])
gr.Markdown("# Add Optional PDF File with Information", elem_classes="text-center text-3xl mb-6")
pdf_file_input = gr.File(label="Upload PDF")
with gr.Group():
gr.Markdown("## AI Model Configuration", elem_classes="text-xl mb-4")
ai_generator = gr.Dropdown(
choices=[
"OpenAI GPT 4",
"OpenAI GPT 4o",
"OpenAI GPT 4o Mini",
"Claude Sonnet 3.5",
"Gemini 1.5 Pro",
"LLaMA 3",
],
value="OpenAI GPT 4o Mini",
label="AI Model",
elem_classes="input-highlight-pink",
)
# input_api = gr.Textbox(label="API Key", visible=False)
# ai_generator.change(update_visibility_api, ai_generator, input_api)
generate_btn = gr.Button("Generate Article", variant="primary")
with gr.Accordion("Advanced Humanizer Settings", open=False):
with gr.Row():
model_dropdown = gr.Radio(
choices=[
"Base Model",
"Large Model",
"XL Model",
# "XL Law Model",
# "XL Marketing Model",
# "XL Child Style Model",
],
value="Large Model",
label="Humanizer Model Version",
)
with gr.Row():
temperature_slider = gr.Slider(
minimum=0.5, maximum=2.0, step=0.1, value=1.3, label="Temperature"
)
top_k_slider = gr.Slider(minimum=0, maximum=300, step=25, value=50, label="Top k")
with gr.Row():
repetition_penalty_slider = gr.Slider(
minimum=1.0, maximum=2.0, step=0.1, value=1, label="Repetition Penalty"
)
length_penalty_slider = gr.Slider(
minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Length Penalty"
)
with gr.Column(scale=3):
output_article = gr.Textbox(label="Generated Article", lines=20)
ai_comments = gr.Textbox(
label="Add comments to help edit generated text", interactive=True, visible=False
)
regenerate_btn = gr.Button("Regenerate Article", variant="primary", visible=False)
ai_detector_dropdown = gr.Radio(
choices=ai_check_options, label="Select AI Detector", value="Polygraf AI"
)
ai_check_btn = gr.Button("AI Check")
with gr.Accordion("AI Detection Results", open=True):
ai_check_result = gr.Label(label="AI Check Result")
highlighted_text = gr.HTML(label="Sentence Breakdown", visible=False)
humanize_btn = gr.Button("Humanize")
# humanized_output = gr.Textbox(label="Humanized Article", lines=20, elem_classes=["custom-textbox"])
humanized_output = gr.Markdown(label="Humanized Article", value="\n\n\n\n", render=True)
copy_to_input_btn = gr.Button("Copy to Input for AI Check")
def regenerate_visible(text):
if text:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def highlight_visible(text):
if text.startswith("Polygraf"):
return gr.update(visible=True)
else:
return gr.update(visible=False)
def search_visible(toggle):
if toggle:
return gr.update(visible=True)
else:
return gr.update(visible=False)
google_search_check.change(search_visible, inputs=google_search_check, outputs=search_options)
ai_detector_dropdown.change(highlight_visible, inputs=ai_detector_dropdown, outputs=highlighted_text)
output_article.change(regenerate_visible, inputs=output_article, outputs=ai_comments)
ai_comments.change(regenerate_visible, inputs=output_article, outputs=regenerate_btn)
ai_check_btn.click(highlight_visible, inputs=ai_detector_dropdown, outputs=highlighted_text)
generate_btn.click(
fn=generate_and_format,
inputs=[
input_role,
input_topic,
input_keywords,
input_length,
input_format,
input_writing_style,
input_tone,
input_user_category,
input_depth,
input_structure,
input_references,
input_num_examples,
input_conclusion,
ai_generator,
# input_api,
google_search_check,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_include,
include_sites,
exclude_sites,
pdf_file_input,
],
outputs=[output_article],
)
regenerate_btn.click(
fn=generate_and_format,
inputs=[
input_role,
input_topic,
input_keywords,
input_length,
input_format,
input_writing_style,
input_tone,
input_user_category,
input_depth,
input_structure,
input_references,
input_num_examples,
input_conclusion,
ai_generator,
# input_api,
google_search_check,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_include,
pdf_file_input,
output_article,
include_sites,
exclude_sites,
ai_comments,
],
outputs=[output_article],
)
ai_check_btn.click(
fn=ai_check,
inputs=[output_article, ai_detector_dropdown],
outputs=[ai_check_result, highlighted_text],
)
humanize_btn.click(
fn=humanize,
inputs=[
output_article,
model_dropdown,
temperature_slider,
repetition_penalty_slider,
top_k_slider,
length_penalty_slider,
],
outputs=[humanized_output],
)
copy_to_input_btn.click(
fn=copy_to_input,
inputs=[humanized_output],
outputs=[output_article],
)
return demo
if __name__ == "__main__":
demo = create_interface()
# demo.launch(server_name="0.0.0.0", share=True, server_port=7890)
demo.launch(server_name="0.0.0.0")