File size: 10,973 Bytes
1be431a
 
 
 
 
 
 
 
 
 
 
caa635d
337ef1e
45d10c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1be431a
 
 
45d10c4
1be431a
 
 
 
 
45d10c4
 
1be431a
45d10c4
 
1be431a
45d10c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1be431a
337ef1e
45d10c4
 
 
 
 
 
 
 
337ef1e
c9c6240
45d10c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9c6240
45d10c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1be431a
45d10c4
 
1be431a
45d10c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e86f65
 
 
45d10c4
 
6e86f65
45d10c4
6e86f65
 
 
45d10c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from urllib.request import urlopen, Request
from googleapiclient.discovery import build
import requests
import httpx
import re
from bs4 import BeautifulSoup
import re, math
from collections import Counter
import numpy as np
import asyncio
import nltk
from sentence_transformers import SentenceTransformer, util
import threading
import torch
import re
import numpy as np
import asyncio
from datetime import date
import nltk
from unidecode import unidecode
from scipy.special import softmax
from transformers import AutoTokenizer
import yaml
import fitz
import os


def remove_accents(input_str):
    text_no_accents = unidecode(input_str)
    return text_no_accents


def remove_special_characters(text):
    text = remove_accents(text)
    pattern = r'[^\w\s\d.,!?\'"()-;]+'
    text = re.sub(pattern, "", text)
    return text


def remove_special_characters_2(text):
    pattern = r"[^a-zA-Z0-9 ]+"
    text = re.sub(pattern, "", text)
    return text


def update_character_count(text):
    return f"{len(text)} characters"


nltk.download("punkt")


with open("config.yaml", "r") as file:
    params = yaml.safe_load(file)

text_bc_model_path = params["TEXT_BC_MODEL_PATH"]

text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)


def len_validator(text):
    min_tokens = 200
    lengt = len(text_bc_tokenizer.tokenize(text=text, return_tensors="pt"))
    if lengt < min_tokens:
        return f"Warning! Input length is {lengt}. Please input a text that is greater than {min_tokens} tokens long. Recommended length {min_tokens*2} tokens."
    else:
        return f"Input length ({lengt}) is satisified."


def extract_text_from_pdf(pdf_path):
    doc = fitz.open(pdf_path)
    text = ""
    for page in doc:
        text += page.get_text()
    return text


WORD = re.compile(r"\w+")
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")


# returns cosine similarity of two vectors
# input: two vectors
# output: integer between 0 and 1.
# def get_cosine(vec1, vec2):
#     intersection = set(vec1.keys()) & set(vec2.keys())

#     # calculating numerator
#     numerator = sum([vec1[x] * vec2[x] for x in intersection])

#     # calculating denominator
#     sum1 = sum([vec1[x] ** 2 for x in vec1.keys()])
#     sum2 = sum([vec2[x] ** 2 for x in vec2.keys()])
#     denominator = math.sqrt(sum1) * math.sqrt(sum2)

#     # checking for divide by zero
#     if denominator == 0:
#         return 0.0
#     else:
#         return float(numerator) / denominator


# # converts given text into a vector
# def text_to_vector(text):
#     # uses the Regular expression above and gets all words
#     words = WORD.findall(text)
#     # returns a counter of all the words (count of number of occurences)
#     return Counter(words)


# # returns cosine similarity of two words
# # uses: text_to_vector(text) and get_cosine(v1,v2)
# def cosineSim(text1, text2):
#     vector1 = text_to_vector(text1)
#     vector2 = text_to_vector(text2)
#     # print vector1,vector2
#     cosine = get_cosine(vector1, vector2)
#     return cosine


# def cos_sim_torch(embedding_1, embedding_2):
#     return util.pytorch_cos_sim(embedding_1, embedding_2).item()


# def embed_text(text):
#     return model.encode(text, convert_to_tensor=True)


# def sentence_similarity(text1, text2):
#     embedding_1 = model.encode(text1, convert_to_tensor=True)
#     embedding_2 = model.encode(text2, convert_to_tensor=True)

#     o = util.pytorch_cos_sim(embedding_1, embedding_2)
#     return o.item()


# def get_soup_requests(url):
#     page = requests.get(url)
#     if page.status_code == 200:
#         soup = BeautifulSoup(page.content, "html.parser")
#         return soup
#     print("HTML soup failed")
#     return None


# def get_soup_httpx(url):
#     client = httpx.Client(timeout=30)
#     try:
#         page = client.get(url)
#         if page.status_code == httpx.codes.OK:
#             soup = BeautifulSoup(page.content, "html.parser")
#             return soup
#     except:
#         print("HTTPx soup failed")
#         return None


# def getSentences(text):
#     from nltk.tokenize import sent_tokenize

#     sents = sent_tokenize(text)
#     two_sents = []
#     for i in range(len(sents)):
#         if (i % 2) == 0:
#             two_sents.append(sents[i])
#         else:
#             two_sents[len(two_sents) - 1] += " " + sents[i]
#     return two_sents


# def googleSearch(
#     plag_option,
#     sentences,
#     urlCount,
#     scoreArray,
#     urlList,
#     sorted_date,
#     domains_to_skip,
#     api_key,
#     cse_id,
#     **kwargs,
# ):
#     service = build("customsearch", "v1", developerKey=api_key)
#     for i, sentence in enumerate(sentences):
#         results = (
#             service.cse()
#             .list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
#             .execute()
#         )
#         if "items" in results and len(results["items"]) > 0:
#             for count, link in enumerate(results["items"]):
#                 # stop after 3 pages
#                 if count >= 3:
#                     break
#                 # skip user selected domains
#                 if any(
#                     ("." + domain) in link["link"] for domain in domains_to_skip
#                 ):
#                     continue
#                 # clean up snippet of '...'
#                 snippet = link["snippet"]
#                 ind = snippet.find("...")
#                 if ind < 20 and ind > 9:
#                     snippet = snippet[ind + len("... ") :]
#                 ind = snippet.find("...")
#                 if ind > len(snippet) - 5:
#                     snippet = snippet[:ind]

#                 # update cosine similarity between snippet and given text
#                 url = link["link"]
#                 if url not in urlList:
#                     urlList.append(url)
#                     scoreArray.append([0] * len(sentences))
#                 urlCount[url] = urlCount[url] + 1 if url in urlCount else 1
#                 if plag_option == "Standard":
#                     scoreArray[urlList.index(url)][i] = cosineSim(
#                         sentence, snippet
#                     )
#                 else:
#                     scoreArray[urlList.index(url)][i] = sentence_similarity(
#                         sentence, snippet
#                     )
#         else:
#             print("Google Search failed")
#     return urlCount, scoreArray


# def getQueries(text, n):
#     # return n-grams of size n
#     words = text.split()
#     return [words[i : i + n] for i in range(len(words) - n + 1)]


# def print2D(array):
#     print(np.array(array))


# def removePunc(text):
#     res = re.sub(r"[^\w\s]", "", text)
#     return res


# async def get_url_data(url, client):
#     try:
#         r = await client.get(url)
#         # print(r.status_code)
#         if r.status_code == 200:
#             # print("in")
#             soup = BeautifulSoup(r.content, "html.parser")
#             return soup
#     except Exception:
#         print("HTTPx parallel soup failed")
#         return None


# async def parallel_scrap(urls):
#     async with httpx.AsyncClient(timeout=30) as client:
#         tasks = []
#         for url in urls:
#             tasks.append(get_url_data(url=url, client=client))
#         results = await asyncio.gather(*tasks, return_exceptions=True)
#     return results


# class TimeoutError(Exception):
#     pass


# def matchingScore(sentence, content):
#     if sentence in content:
#         return 1
#     sentence = removePunc(sentence)
#     content = removePunc(content)
#     if sentence in content:
#         return 1
#     else:
#         n = 5
#         ngrams = getQueries(sentence, n)
#         if len(ngrams) == 0:
#             return 0
#         matched = [x for x in ngrams if " ".join(x) in content]
#     return len(matched) / len(ngrams)


# # def matchingScoreWithTimeout(sentence, content):
# #     def timeout_handler():
# #         raise TimeoutError("Function timed out")

# #     timer = threading.Timer(10, timeout_handler)  # Set a timer for 2 seconds
# #     timer.start()
# #     try:
# #         score = sentence_similarity(sentence, content)
# #         # score = matchingScore(sentence, content)
# #         timer.cancel()  # Cancel the timer if calculation completes before timeout
# #         return score
# #     except TimeoutError:
# #         return 0


# # async def matchingScoreAsync(sentences, content, content_idx, ScoreArray):
# #     content = removePunc(content)
# #     for j, sentence in enumerate(sentences):
# #         sentence = removePunc(sentence)
# #         if sentence in content:
# #             ScoreArray[content_idx][j] = 1
# #         else:
# #             n = 5
# #             ngrams = getQueries(sentence, n)
# #             if len(ngrams) == 0:
# #                 return 0
# #             matched = [x for x in ngrams if " ".join(x) in content]
# #             ScoreArray[content_idx][j] = len(matched) / len(ngrams)
# #     print(
# #         f"Analyzed {content_idx+1} of soups (SOUP SUCCEEDED)........................"
# #     )
# #     return ScoreArray


# async def matchingScoreAsync(
#     sentences, content, content_idx, ScoreArray, model, util
# ):
#     content = removePunc(content)
#     for j, sentence in enumerate(sentences):
#         sentence = removePunc(sentence)
#         similarity_score = sentence_similarity(sentence, content, model, util)
#         ScoreArray[content_idx][j] = similarity_score
#     print(
#         f"Analyzed {content_idx+1} of contents (CONTENT ANALYZED)........................"
#     )
#     return ScoreArray


# async def parallel_analyze(soups, sentences, ScoreArray):
#     tasks = []
#     for i, soup in enumerate(soups):
#         if soup:
#             page_content = soup.text
#             tasks.append(
#                 matchingScoreAsync(sentences, page_content, i, ScoreArray)
#             )
#         else:
#             print(
#                 f"Analyzed {i+1} of soups (SOUP FAILED)........................"
#             )
#     ScoreArray = await asyncio.gather(*tasks, return_exceptions=True)
#     return ScoreArray


# async def parallel_analyze_2(soups, sentences, ScoreArray):
#     tasks = [[0] * len(ScoreArray[0]) for i in range(len(ScoreArray))]
#     for i, soup in enumerate(soups):
#         if soup:
#             page_content = soup.text
#             for j, sent in enumerate(sentences):
#                 print(
#                     f"Analyzing {i+1} of {len(soups)} soups with {j+1} of {len(sentences)} sentences........................"
#                 )
#                 tasks[i][j] = sentence_similarity(sent, page_content)
#         else:
#             print(
#                 f"Analyzed {i+1} of soups (SOUP FAILED)........................"
#             )
#     ScoreArray = await asyncio.gather(*tasks, return_exceptions=True)
#     return ScoreArray