Spaces:
Running
Running
File size: 7,870 Bytes
1be431a caa635d 1be431a caa635d 1be431a caa635d d4ada6d caa635d 1be431a 6d6d84c 1be431a 6d6d84c 1be431a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
from urllib.request import urlopen, Request
from googleapiclient.discovery import build
import requests
import httpx
import re
from bs4 import BeautifulSoup
import re, math
from collections import Counter
import numpy as np
import asyncio
import nltk
from sentence_transformers import SentenceTransformer, util
nltk.download('punkt')
WORD = re.compile(r"\w+")
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# returns cosine similarity of two vectors
# input: two vectors
# output: integer between 0 and 1.
def get_cosine(vec1, vec2):
intersection = set(vec1.keys()) & set(vec2.keys())
# calculating numerator
numerator = sum([vec1[x] * vec2[x] for x in intersection])
# calculating denominator
sum1 = sum([vec1[x] ** 2 for x in vec1.keys()])
sum2 = sum([vec2[x] ** 2 for x in vec2.keys()])
denominator = math.sqrt(sum1) * math.sqrt(sum2)
# checking for divide by zero
if denominator == 0:
return 0.0
else:
return float(numerator) / denominator
# converts given text into a vector
def text_to_vector(text):
# uses the Regular expression above and gets all words
words = WORD.findall(text)
# returns a counter of all the words (count of number of occurences)
return Counter(words)
# returns cosine similarity of two words
# uses: text_to_vector(text) and get_cosine(v1,v2)
def cosineSim(text1, text2):
vector1 = text_to_vector(text1)
vector2 = text_to_vector(text2)
# print vector1,vector2
cosine = get_cosine(vector1, vector2)
return cosine
def sentence_similarity(text1, text2):
embedding_1= model.encode(text1, convert_to_tensor=True)
embedding_2 = model.encode(text2, convert_to_tensor=True)
o = util.pytorch_cos_sim(embedding_1, embedding_2)
return o.item()
def get_soup_requests(url):
page = requests.get(url)
if page.status_code == 200:
soup = BeautifulSoup(page.content, "html.parser")
return soup
print("HTML soup failed")
return None
def get_soup_httpx(url):
client = httpx.Client(timeout=30)
try:
page = client.get(url)
if page.status_code == httpx.codes.OK:
soup = BeautifulSoup(page.content, "html.parser")
return soup
except:
print("HTTPx soup failed")
return None
def getSentences(text):
from nltk.tokenize import sent_tokenize
sents = sent_tokenize(text)
two_sents = []
for i in range(len(sents)):
if (i % 2) == 0:
two_sents.append(sents[i])
else:
two_sents[len(two_sents) - 1] += " " + sents[i]
return two_sents
def googleSearch(
plag_option,
sentences,
urlCount,
scoreArray,
urlList,
sorted_date,
domains_to_skip,
api_key,
cse_id,
**kwargs,
):
service = build("customsearch", "v1", developerKey=api_key)
for i, sentence in enumerate(sentences):
results = (
service.cse()
.list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
.execute()
)
if "items" in results and len(results["items"]) > 0:
for count, link in enumerate(results["items"]):
# stop after 5 pages
if count > 4:
break
# skip user selected domains
if any(
("." + domain) in link["link"]
for domain in domains_to_skip
):
continue
# clean up snippet of '...'
snippet = link["snippet"]
ind = snippet.find("...")
if ind < 20 and ind > 9:
snippet = snippet[ind + len("... ") :]
ind = snippet.find("...")
if ind > len(snippet) - 5:
snippet = snippet[:ind]
# update cosine similarity between snippet and given text
url = link["link"]
if url not in urlList:
urlList.append(url)
scoreArray.append([0] * len(sentences))
urlCount[url] = urlCount[url] + 1 if url in urlCount else 1
if plag_option == 'Standard':
scoreArray[urlList.index(url)][i] = cosineSim(
sentence, snippet)
else :
scoreArray[urlList.index(url)][i] = sentence_similarity(
sentence, snippet
)
else:
print("Google Search failed")
return urlCount, scoreArray
def getQueries(text, n):
# return n-grams of size n
finalq = []
words = text.split()
l = len(words)
for i in range(0, l - n + 1):
finalq.append(words[i : i + n])
return finalq
def print2D(array):
print(np.array(array))
def removePunc(text):
res = re.sub(r"[^\w\s]", "", text)
return res
async def get_url_data(url, client):
try:
r = await client.get(url)
# print(r.status_code)
if r.status_code == 200:
# print("in")
soup = BeautifulSoup(r.content, "html.parser")
return soup
except Exception:
print("HTTPx parallel soup failed")
return None
async def parallel_scrap(urls):
async with httpx.AsyncClient(timeout=30) as client:
tasks = []
for url in urls:
tasks.append(get_url_data(url=url, client=client))
results = await asyncio.gather(*tasks, return_exceptions=True)
return results
def matchingScore(sentence, content):
if sentence in content:
return 1
sentence = removePunc(sentence)
content = removePunc(content)
if sentence in content:
return 1
else:
n = 5
ngrams = getQueries(sentence, n)
if len(ngrams) == 0:
return 0
matched = [x for x in ngrams if " ".join(x) in content]
return len(matched) / len(ngrams)
async def matchingScoreAsync(sentences, content, content_idx, ScoreArray):
content = removePunc(content)
for j, sentence in enumerate(sentences):
sentence = removePunc(sentence)
if sentence in content:
ScoreArray[content_idx][j] = 1
else:
n = 5
ngrams = getQueries(sentence, n)
if len(ngrams) == 0:
return 0
matched = [x for x in ngrams if " ".join(x) in content]
ScoreArray[content_idx][j] = len(matched) / len(ngrams)
print(
f"Analyzed {content_idx+1} of soups (SOUP SUCCEEDED)........................"
)
return ScoreArray
async def parallel_analyze(soups, sentences, ScoreArray):
tasks = []
for i, soup in enumerate(soups):
if soup:
page_content = soup.text
tasks.append(
matchingScoreAsync(sentences, page_content, i, ScoreArray)
)
else:
print(
f"Analyzed {i+1} of soups (SOUP FAILED)........................"
)
ScoreArray = await asyncio.gather(*tasks, return_exceptions=True)
return ScoreArray
async def parallel_analyze_2(soups, sentences, ScoreArray):
tasks = [[0] * len(ScoreArray[0]) for i in range(len(ScoreArray))]
for i, soup in enumerate(soups):
if soup:
page_content = soup.text
for j, sent in enumerate(sentences):
print(
f"Analyzing {i+1} of {len(soups)} soups with {j+1} of {len(sentences)} sentences........................"
)
tasks[i][j] = matchingScore(sent, page_content)
else:
print(
f"Analyzed {i+1} of soups (SOUP FAILED)........................"
)
ScoreArray = await asyncio.gather(*tasks, return_exceptions=True)
return ScoreArray |