Spaces:
Sleeping
Sleeping
File size: 10,973 Bytes
1be431a caa635d 337ef1e 45d10c4 1be431a 45d10c4 1be431a 45d10c4 1be431a 45d10c4 1be431a 45d10c4 1be431a 337ef1e 45d10c4 337ef1e c9c6240 45d10c4 c9c6240 45d10c4 1be431a 45d10c4 1be431a 45d10c4 6e86f65 45d10c4 6e86f65 45d10c4 6e86f65 45d10c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
from urllib.request import urlopen, Request
from googleapiclient.discovery import build
import requests
import httpx
import re
from bs4 import BeautifulSoup
import re, math
from collections import Counter
import numpy as np
import asyncio
import nltk
from sentence_transformers import SentenceTransformer, util
import threading
import torch
import re
import numpy as np
import asyncio
from datetime import date
import nltk
from unidecode import unidecode
from scipy.special import softmax
from transformers import AutoTokenizer
import yaml
import fitz
import os
def remove_accents(input_str):
text_no_accents = unidecode(input_str)
return text_no_accents
def remove_special_characters(text):
text = remove_accents(text)
pattern = r'[^\w\s\d.,!?\'"()-;]+'
text = re.sub(pattern, "", text)
return text
def remove_special_characters_2(text):
pattern = r"[^a-zA-Z0-9 ]+"
text = re.sub(pattern, "", text)
return text
def update_character_count(text):
return f"{len(text)} characters"
nltk.download("punkt")
with open("config.yaml", "r") as file:
params = yaml.safe_load(file)
text_bc_model_path = params["TEXT_BC_MODEL_PATH"]
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
def len_validator(text):
min_tokens = 200
lengt = len(text_bc_tokenizer.tokenize(text=text, return_tensors="pt"))
if lengt < min_tokens:
return f"Warning! Input length is {lengt}. Please input a text that is greater than {min_tokens} tokens long. Recommended length {min_tokens*2} tokens."
else:
return f"Input length ({lengt}) is satisified."
def extract_text_from_pdf(pdf_path):
doc = fitz.open(pdf_path)
text = ""
for page in doc:
text += page.get_text()
return text
WORD = re.compile(r"\w+")
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# returns cosine similarity of two vectors
# input: two vectors
# output: integer between 0 and 1.
# def get_cosine(vec1, vec2):
# intersection = set(vec1.keys()) & set(vec2.keys())
# # calculating numerator
# numerator = sum([vec1[x] * vec2[x] for x in intersection])
# # calculating denominator
# sum1 = sum([vec1[x] ** 2 for x in vec1.keys()])
# sum2 = sum([vec2[x] ** 2 for x in vec2.keys()])
# denominator = math.sqrt(sum1) * math.sqrt(sum2)
# # checking for divide by zero
# if denominator == 0:
# return 0.0
# else:
# return float(numerator) / denominator
# # converts given text into a vector
# def text_to_vector(text):
# # uses the Regular expression above and gets all words
# words = WORD.findall(text)
# # returns a counter of all the words (count of number of occurences)
# return Counter(words)
# # returns cosine similarity of two words
# # uses: text_to_vector(text) and get_cosine(v1,v2)
# def cosineSim(text1, text2):
# vector1 = text_to_vector(text1)
# vector2 = text_to_vector(text2)
# # print vector1,vector2
# cosine = get_cosine(vector1, vector2)
# return cosine
# def cos_sim_torch(embedding_1, embedding_2):
# return util.pytorch_cos_sim(embedding_1, embedding_2).item()
# def embed_text(text):
# return model.encode(text, convert_to_tensor=True)
# def sentence_similarity(text1, text2):
# embedding_1 = model.encode(text1, convert_to_tensor=True)
# embedding_2 = model.encode(text2, convert_to_tensor=True)
# o = util.pytorch_cos_sim(embedding_1, embedding_2)
# return o.item()
# def get_soup_requests(url):
# page = requests.get(url)
# if page.status_code == 200:
# soup = BeautifulSoup(page.content, "html.parser")
# return soup
# print("HTML soup failed")
# return None
# def get_soup_httpx(url):
# client = httpx.Client(timeout=30)
# try:
# page = client.get(url)
# if page.status_code == httpx.codes.OK:
# soup = BeautifulSoup(page.content, "html.parser")
# return soup
# except:
# print("HTTPx soup failed")
# return None
# def getSentences(text):
# from nltk.tokenize import sent_tokenize
# sents = sent_tokenize(text)
# two_sents = []
# for i in range(len(sents)):
# if (i % 2) == 0:
# two_sents.append(sents[i])
# else:
# two_sents[len(two_sents) - 1] += " " + sents[i]
# return two_sents
# def googleSearch(
# plag_option,
# sentences,
# urlCount,
# scoreArray,
# urlList,
# sorted_date,
# domains_to_skip,
# api_key,
# cse_id,
# **kwargs,
# ):
# service = build("customsearch", "v1", developerKey=api_key)
# for i, sentence in enumerate(sentences):
# results = (
# service.cse()
# .list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
# .execute()
# )
# if "items" in results and len(results["items"]) > 0:
# for count, link in enumerate(results["items"]):
# # stop after 3 pages
# if count >= 3:
# break
# # skip user selected domains
# if any(
# ("." + domain) in link["link"] for domain in domains_to_skip
# ):
# continue
# # clean up snippet of '...'
# snippet = link["snippet"]
# ind = snippet.find("...")
# if ind < 20 and ind > 9:
# snippet = snippet[ind + len("... ") :]
# ind = snippet.find("...")
# if ind > len(snippet) - 5:
# snippet = snippet[:ind]
# # update cosine similarity between snippet and given text
# url = link["link"]
# if url not in urlList:
# urlList.append(url)
# scoreArray.append([0] * len(sentences))
# urlCount[url] = urlCount[url] + 1 if url in urlCount else 1
# if plag_option == "Standard":
# scoreArray[urlList.index(url)][i] = cosineSim(
# sentence, snippet
# )
# else:
# scoreArray[urlList.index(url)][i] = sentence_similarity(
# sentence, snippet
# )
# else:
# print("Google Search failed")
# return urlCount, scoreArray
# def getQueries(text, n):
# # return n-grams of size n
# words = text.split()
# return [words[i : i + n] for i in range(len(words) - n + 1)]
# def print2D(array):
# print(np.array(array))
# def removePunc(text):
# res = re.sub(r"[^\w\s]", "", text)
# return res
# async def get_url_data(url, client):
# try:
# r = await client.get(url)
# # print(r.status_code)
# if r.status_code == 200:
# # print("in")
# soup = BeautifulSoup(r.content, "html.parser")
# return soup
# except Exception:
# print("HTTPx parallel soup failed")
# return None
# async def parallel_scrap(urls):
# async with httpx.AsyncClient(timeout=30) as client:
# tasks = []
# for url in urls:
# tasks.append(get_url_data(url=url, client=client))
# results = await asyncio.gather(*tasks, return_exceptions=True)
# return results
# class TimeoutError(Exception):
# pass
# def matchingScore(sentence, content):
# if sentence in content:
# return 1
# sentence = removePunc(sentence)
# content = removePunc(content)
# if sentence in content:
# return 1
# else:
# n = 5
# ngrams = getQueries(sentence, n)
# if len(ngrams) == 0:
# return 0
# matched = [x for x in ngrams if " ".join(x) in content]
# return len(matched) / len(ngrams)
# # def matchingScoreWithTimeout(sentence, content):
# # def timeout_handler():
# # raise TimeoutError("Function timed out")
# # timer = threading.Timer(10, timeout_handler) # Set a timer for 2 seconds
# # timer.start()
# # try:
# # score = sentence_similarity(sentence, content)
# # # score = matchingScore(sentence, content)
# # timer.cancel() # Cancel the timer if calculation completes before timeout
# # return score
# # except TimeoutError:
# # return 0
# # async def matchingScoreAsync(sentences, content, content_idx, ScoreArray):
# # content = removePunc(content)
# # for j, sentence in enumerate(sentences):
# # sentence = removePunc(sentence)
# # if sentence in content:
# # ScoreArray[content_idx][j] = 1
# # else:
# # n = 5
# # ngrams = getQueries(sentence, n)
# # if len(ngrams) == 0:
# # return 0
# # matched = [x for x in ngrams if " ".join(x) in content]
# # ScoreArray[content_idx][j] = len(matched) / len(ngrams)
# # print(
# # f"Analyzed {content_idx+1} of soups (SOUP SUCCEEDED)........................"
# # )
# # return ScoreArray
# async def matchingScoreAsync(
# sentences, content, content_idx, ScoreArray, model, util
# ):
# content = removePunc(content)
# for j, sentence in enumerate(sentences):
# sentence = removePunc(sentence)
# similarity_score = sentence_similarity(sentence, content, model, util)
# ScoreArray[content_idx][j] = similarity_score
# print(
# f"Analyzed {content_idx+1} of contents (CONTENT ANALYZED)........................"
# )
# return ScoreArray
# async def parallel_analyze(soups, sentences, ScoreArray):
# tasks = []
# for i, soup in enumerate(soups):
# if soup:
# page_content = soup.text
# tasks.append(
# matchingScoreAsync(sentences, page_content, i, ScoreArray)
# )
# else:
# print(
# f"Analyzed {i+1} of soups (SOUP FAILED)........................"
# )
# ScoreArray = await asyncio.gather(*tasks, return_exceptions=True)
# return ScoreArray
# async def parallel_analyze_2(soups, sentences, ScoreArray):
# tasks = [[0] * len(ScoreArray[0]) for i in range(len(ScoreArray))]
# for i, soup in enumerate(soups):
# if soup:
# page_content = soup.text
# for j, sent in enumerate(sentences):
# print(
# f"Analyzing {i+1} of {len(soups)} soups with {j+1} of {len(sentences)} sentences........................"
# )
# tasks[i][j] = sentence_similarity(sent, page_content)
# else:
# print(
# f"Analyzed {i+1} of soups (SOUP FAILED)........................"
# )
# ScoreArray = await asyncio.gather(*tasks, return_exceptions=True)
# return ScoreArray
|