Spaces:
Running
Running
import re | |
import re | |
from sentence_transformers import SentenceTransformer, util | |
import re | |
from unidecode import unidecode | |
from transformers import AutoTokenizer | |
import yaml | |
import fitz | |
def remove_accents(input_str): | |
text_no_accents = unidecode(input_str) | |
return text_no_accents | |
def remove_special_characters(text): | |
text = re.sub(r'https?://\S+|www\.\S+', '', text) | |
emoji_pattern = re.compile("[" | |
u"\U0001F600-\U0001F64F" # emoticons | |
u"\U0001F300-\U0001F5FF" # symbols & pictographs | |
u"\U0001F680-\U0001F6FF" # transport & map symbols | |
u"\U0001F700-\U0001F77F" # alchemical symbols | |
u"\U0001F780-\U0001F7FF" # Geometric Shapes Extended | |
u"\U0001F800-\U0001F8FF" # Supplemental Arrows-C | |
u"\U0001F900-\U0001F9FF" # Supplemental Symbols and Pictographs | |
u"\U0001FA00-\U0001FA6F" # Chess Symbols | |
u"\U0001FA70-\U0001FAFF" # Symbols and Pictographs Extended-A | |
u"\U00002702-\U000027B0" # Dingbats | |
u"\U000024C2-\U0001F251" | |
"]+", flags=re.UNICODE) | |
text = emoji_pattern.sub('', text) | |
text = re.sub(r'#\w+', '', text) | |
text = re.sub(r'[^\w\s\d.,!?\'"()-;]', '', text) | |
text = re.sub(r'\s+([.,!?;])', r'\1', text) | |
text = re.sub(r'([.,!?;])(\S)', r'\1 \2', text) | |
text = re.sub(r'\s+', ' ', text).strip() | |
return text | |
def remove_special_characters_2(text): | |
pattern = r"[^a-zA-Z0-9 ]+" | |
text = re.sub(pattern, "", text) | |
return text | |
def update_character_count(text): | |
return f"{len(text)} characters" | |
with open("config.yaml", "r") as file: | |
params = yaml.safe_load(file) | |
text_bc_model_path = params["TEXT_BC_MODEL_PATH"] | |
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path) | |
def len_validator(text): | |
min_tokens = 200 | |
lengt = len(text_bc_tokenizer.tokenize(text=text, return_tensors="pt")) | |
if lengt < min_tokens: | |
return f"Warning! Input length is {lengt}. Please input a text that is greater than {min_tokens} tokens long. Recommended length {min_tokens*2} tokens." | |
else: | |
return f"Input length ({lengt}) is satisified." | |
def extract_text_from_pdf(pdf_path): | |
doc = fitz.open(pdf_path) | |
text = "" | |
for page in doc: | |
text += page.get_text() | |
return text | |
WORD = re.compile(r"\w+") | |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |