copyright_checker / utils.py
aliasgerovs's picture
Merge branch 'main' into demo
3640695
raw
history blame
2.38 kB
import re
import re
from sentence_transformers import SentenceTransformer, util
import re
from unidecode import unidecode
from transformers import AutoTokenizer
import yaml
import fitz
def remove_accents(input_str):
text_no_accents = unidecode(input_str)
return text_no_accents
def remove_special_characters(text):
text = re.sub(r'https?://\S+|www\.\S+', '', text)
emoji_pattern = re.compile("["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F700-\U0001F77F" # alchemical symbols
u"\U0001F780-\U0001F7FF" # Geometric Shapes Extended
u"\U0001F800-\U0001F8FF" # Supplemental Arrows-C
u"\U0001F900-\U0001F9FF" # Supplemental Symbols and Pictographs
u"\U0001FA00-\U0001FA6F" # Chess Symbols
u"\U0001FA70-\U0001FAFF" # Symbols and Pictographs Extended-A
u"\U00002702-\U000027B0" # Dingbats
u"\U000024C2-\U0001F251"
"]+", flags=re.UNICODE)
text = emoji_pattern.sub('', text)
text = re.sub(r'#\w+', '', text)
text = re.sub(r'[^\w\s\d.,!?\'"()-;]', '', text)
text = re.sub(r'\s+([.,!?;])', r'\1', text)
text = re.sub(r'([.,!?;])(\S)', r'\1 \2', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def remove_special_characters_2(text):
pattern = r"[^a-zA-Z0-9 ]+"
text = re.sub(pattern, "", text)
return text
def update_character_count(text):
return f"{len(text)} characters"
with open("config.yaml", "r") as file:
params = yaml.safe_load(file)
text_bc_model_path = params["TEXT_BC_MODEL_PATH"]
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
def len_validator(text):
min_tokens = 200
lengt = len(text_bc_tokenizer.tokenize(text=text, return_tensors="pt"))
if lengt < min_tokens:
return f"Warning! Input length is {lengt}. Please input a text that is greater than {min_tokens} tokens long. Recommended length {min_tokens*2} tokens."
else:
return f"Input length ({lengt}) is satisified."
def extract_text_from_pdf(pdf_path):
doc = fitz.open(pdf_path)
text = ""
for page in doc:
text += page.get_text()
return text
WORD = re.compile(r"\w+")
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")