copyright_checker / utils.py
aliasgerovs's picture
Update utils.py
c9c6240
raw
history blame
9.07 kB
from urllib.request import urlopen, Request
from googleapiclient.discovery import build
import requests
import httpx
import re
from bs4 import BeautifulSoup
import re, math
from collections import Counter
import numpy as np
import asyncio
import nltk
from sentence_transformers import SentenceTransformer, util
import threading
nltk.download('punkt')
WORD = re.compile(r"\w+")
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# returns cosine similarity of two vectors
# input: two vectors
# output: integer between 0 and 1.
def get_cosine(vec1, vec2):
intersection = set(vec1.keys()) & set(vec2.keys())
# calculating numerator
numerator = sum([vec1[x] * vec2[x] for x in intersection])
# calculating denominator
sum1 = sum([vec1[x] ** 2 for x in vec1.keys()])
sum2 = sum([vec2[x] ** 2 for x in vec2.keys()])
denominator = math.sqrt(sum1) * math.sqrt(sum2)
# checking for divide by zero
if denominator == 0:
return 0.0
else:
return float(numerator) / denominator
# converts given text into a vector
def text_to_vector(text):
# uses the Regular expression above and gets all words
words = WORD.findall(text)
# returns a counter of all the words (count of number of occurences)
return Counter(words)
# returns cosine similarity of two words
# uses: text_to_vector(text) and get_cosine(v1,v2)
def cosineSim(text1, text2):
vector1 = text_to_vector(text1)
vector2 = text_to_vector(text2)
# print vector1,vector2
cosine = get_cosine(vector1, vector2)
return cosine
def cos_sim_torch(embedding_1, embedding_2):
return util.pytorch_cos_sim(embedding_1, embedding_2).item()
def embed_text(text):
return model.encode(text, convert_to_tensor=True)
def sentence_similarity(text1, text2):
embedding_1= model.encode(text1, convert_to_tensor=True)
embedding_2 = model.encode(text2, convert_to_tensor=True)
o = util.pytorch_cos_sim(embedding_1, embedding_2)
return o.item()
def get_soup_requests(url):
page = requests.get(url)
if page.status_code == 200:
soup = BeautifulSoup(page.content, "html.parser")
return soup
print("HTML soup failed")
return None
def get_soup_httpx(url):
client = httpx.Client(timeout=30)
try:
page = client.get(url)
if page.status_code == httpx.codes.OK:
soup = BeautifulSoup(page.content, "html.parser")
return soup
except:
print("HTTPx soup failed")
return None
def getSentences(text):
from nltk.tokenize import sent_tokenize
sents = sent_tokenize(text)
two_sents = []
for i in range(len(sents)):
if (i % 2) == 0:
two_sents.append(sents[i])
else:
two_sents[len(two_sents) - 1] += " " + sents[i]
return two_sents
def googleSearch(
plag_option,
sentences,
urlCount,
scoreArray,
urlList,
sorted_date,
domains_to_skip,
api_key,
cse_id,
**kwargs,
):
service = build("customsearch", "v1", developerKey=api_key)
for i, sentence in enumerate(sentences):
results = (
service.cse()
.list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
.execute()
)
if "items" in results and len(results["items"]) > 0:
for count, link in enumerate(results["items"]):
# stop after 3 pages
if count >= 3:
break
# skip user selected domains
if any(
("." + domain) in link["link"]
for domain in domains_to_skip
):
continue
# clean up snippet of '...'
snippet = link["snippet"]
ind = snippet.find("...")
if ind < 20 and ind > 9:
snippet = snippet[ind + len("... ") :]
ind = snippet.find("...")
if ind > len(snippet) - 5:
snippet = snippet[:ind]
# update cosine similarity between snippet and given text
url = link["link"]
if url not in urlList:
urlList.append(url)
scoreArray.append([0] * len(sentences))
urlCount[url] = urlCount[url] + 1 if url in urlCount else 1
if plag_option == 'Standard':
scoreArray[urlList.index(url)][i] = cosineSim(
sentence, snippet)
else :
scoreArray[urlList.index(url)][i] = sentence_similarity(
sentence, snippet
)
else:
print("Google Search failed")
return urlCount, scoreArray
def getQueries(text, n):
# return n-grams of size n
words = text.split()
return [words[i : i + n] for i in range(len(words) - n + 1)]
def print2D(array):
print(np.array(array))
def removePunc(text):
res = re.sub(r"[^\w\s]", "", text)
return res
async def get_url_data(url, client):
try:
r = await client.get(url)
# print(r.status_code)
if r.status_code == 200:
# print("in")
soup = BeautifulSoup(r.content, "html.parser")
return soup
except Exception:
print("HTTPx parallel soup failed")
return None
async def parallel_scrap(urls):
async with httpx.AsyncClient(timeout=30) as client:
tasks = []
for url in urls:
tasks.append(get_url_data(url=url, client=client))
results = await asyncio.gather(*tasks, return_exceptions=True)
return results
class TimeoutError(Exception):
pass
def matchingScore(sentence, content):
if sentence in content:
return 1
sentence = removePunc(sentence)
content = removePunc(content)
if sentence in content:
return 1
else:
n = 5
ngrams = getQueries(sentence, n)
if len(ngrams) == 0:
return 0
matched = [x for x in ngrams if " ".join(x) in content]
return len(matched) / len(ngrams)
# def matchingScoreWithTimeout(sentence, content):
# def timeout_handler():
# raise TimeoutError("Function timed out")
# timer = threading.Timer(10, timeout_handler) # Set a timer for 2 seconds
# timer.start()
# try:
# score = sentence_similarity(sentence, content)
# # score = matchingScore(sentence, content)
# timer.cancel() # Cancel the timer if calculation completes before timeout
# return score
# except TimeoutError:
# return 0
# async def matchingScoreAsync(sentences, content, content_idx, ScoreArray):
# content = removePunc(content)
# for j, sentence in enumerate(sentences):
# sentence = removePunc(sentence)
# if sentence in content:
# ScoreArray[content_idx][j] = 1
# else:
# n = 5
# ngrams = getQueries(sentence, n)
# if len(ngrams) == 0:
# return 0
# matched = [x for x in ngrams if " ".join(x) in content]
# ScoreArray[content_idx][j] = len(matched) / len(ngrams)
# print(
# f"Analyzed {content_idx+1} of soups (SOUP SUCCEEDED)........................"
# )
# return ScoreArray
async def matchingScoreAsync(sentences, content, content_idx, ScoreArray, model, util):
content = removePunc(content)
for j, sentence in enumerate(sentences):
sentence = removePunc(sentence)
similarity_score = sentence_similarity(sentence, content, model, util)
ScoreArray[content_idx][j] = similarity_score
print(f"Analyzed {content_idx+1} of contents (CONTENT ANALYZED)........................")
return ScoreArray
async def parallel_analyze(soups, sentences, ScoreArray):
tasks = []
for i, soup in enumerate(soups):
if soup:
page_content = soup.text
tasks.append(
matchingScoreAsync(sentences, page_content, i, ScoreArray)
)
else:
print(
f"Analyzed {i+1} of soups (SOUP FAILED)........................"
)
ScoreArray = await asyncio.gather(*tasks, return_exceptions=True)
return ScoreArray
async def parallel_analyze_2(soups, sentences, ScoreArray):
tasks = [[0] * len(ScoreArray[0]) for i in range(len(ScoreArray))]
for i, soup in enumerate(soups):
if soup:
page_content = soup.text
for j, sent in enumerate(sentences):
print(
f"Analyzing {i+1} of {len(soups)} soups with {j+1} of {len(sentences)} sentences........................"
)
tasks[i][j] = sentence_similarity(sent, page_content)
else:
print(
f"Analyzed {i+1} of soups (SOUP FAILED)........................"
)
ScoreArray = await asyncio.gather(*tasks, return_exceptions=True)
return ScoreArray