Spaces:
Running
Running
aliasgerovs
commited on
Commit
•
0eaca07
1
Parent(s):
173f4a0
Updated
Browse files
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ASSEMBLYAI_API_KEY = 'f9d0fe8c23304ae193d694294b615dcc'
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: ©
|
|
4 |
colorFrom: gray
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.36.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.py
CHANGED
@@ -13,6 +13,9 @@ from functools import partial
|
|
13 |
from audio import assemblyai_transcribe
|
14 |
import yt_dlp
|
15 |
import os
|
|
|
|
|
|
|
16 |
|
17 |
np.set_printoptions(suppress=True)
|
18 |
|
@@ -28,6 +31,21 @@ analyze_and_highlight_quillbot = partial(
|
|
28 |
)
|
29 |
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def ai_generated_test(option, bias_buster_selected, input):
|
32 |
if bias_buster_selected:
|
33 |
input = update(input)
|
@@ -118,6 +136,14 @@ with gr.Blocks() as demo:
|
|
118 |
)
|
119 |
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
with gr.Row():
|
122 |
url_input = gr.Textbox(
|
123 |
label="Input Page URL to check", lines=1, placeholder="")
|
@@ -128,7 +154,15 @@ with gr.Blocks() as demo:
|
|
128 |
audio_url_input.change(
|
129 |
fn=assemblyai_transcribe, inputs=audio_url_input, outputs=input_text
|
130 |
)
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
char_count = gr.Textbox(label="Minumum Character Limit Check")
|
133 |
input_text.change(fn=len_validator, inputs=input_text, outputs=char_count)
|
134 |
|
|
|
13 |
from audio import assemblyai_transcribe
|
14 |
import yt_dlp
|
15 |
import os
|
16 |
+
import pandas as pd
|
17 |
+
from const import plag_script
|
18 |
+
from datasets import load_dataset, Dataset
|
19 |
|
20 |
np.set_printoptions(suppress=True)
|
21 |
|
|
|
31 |
)
|
32 |
|
33 |
|
34 |
+
|
35 |
+
def save_request(email, video_url):
|
36 |
+
# Save the email and video URL to the CSV file
|
37 |
+
if email is None or email == "":
|
38 |
+
return "Please enter your email.", gr.update(visible=True)
|
39 |
+
dat = load_dataset(requests_repo)["train"]
|
40 |
+
df = dat.to_pandas()
|
41 |
+
new_row = pd.DataFrame(
|
42 |
+
{"email": [email], "video_url": [video_url], "status": "pending"}
|
43 |
+
)
|
44 |
+
df = pd.concat([df, new_row], ignore_index=True)
|
45 |
+
dat = Dataset.from_pandas(df)
|
46 |
+
dat.push_to_hub(requests_repo)
|
47 |
+
return "Your request has been saved.", gr.update(visible=False)
|
48 |
+
|
49 |
def ai_generated_test(option, bias_buster_selected, input):
|
50 |
if bias_buster_selected:
|
51 |
input = update(input)
|
|
|
136 |
)
|
137 |
|
138 |
|
139 |
+
with gr.Column(visible=False) as request_row:
|
140 |
+
with gr.Row():
|
141 |
+
email_input = gr.Textbox(label="Email")
|
142 |
+
youtube_url_input = gr.Textbox(label="YouTube Video URL")
|
143 |
+
with gr.Row():
|
144 |
+
video_submit_btn = gr.Button("Submit Video Request")
|
145 |
+
|
146 |
+
|
147 |
with gr.Row():
|
148 |
url_input = gr.Textbox(
|
149 |
label="Input Page URL to check", lines=1, placeholder="")
|
|
|
154 |
audio_url_input.change(
|
155 |
fn=assemblyai_transcribe, inputs=audio_url_input, outputs=input_text
|
156 |
)
|
157 |
+
|
158 |
+
|
159 |
+
video_submit_btn.click(
|
160 |
+
fn=save_request,
|
161 |
+
inputs=[email_input, youtube_url_input],
|
162 |
+
outputs=[input_text, request_row],
|
163 |
+
api_name="video_request",
|
164 |
+
)
|
165 |
+
|
166 |
char_count = gr.Textbox(label="Minumum Character Limit Check")
|
167 |
input_text.change(fn=len_validator, inputs=input_text, outputs=char_count)
|
168 |
|
const.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
url_types = {
|
2 |
+
"Student Publications": [
|
3 |
+
"studentpulse.com",
|
4 |
+
"undergraduateresearch.ucsd.edu",
|
5 |
+
"jmurj.jmu.edu",
|
6 |
+
"cur.org",
|
7 |
+
"urj.ucf.edu",
|
8 |
+
"ugresearch.umn.edu",
|
9 |
+
"undergraduateresearch.wustl.edu",
|
10 |
+
"ugresearch.ucla.edu",
|
11 |
+
"jur.byu.edu",
|
12 |
+
"undergradresearch.ncsu.edu",
|
13 |
+
],
|
14 |
+
"Wikihost": [
|
15 |
+
"fandom.com",
|
16 |
+
"wikidot.com",
|
17 |
+
"wikia.org",
|
18 |
+
"wikispaces.com",
|
19 |
+
"gamepedia.com",
|
20 |
+
"wikibooks.org",
|
21 |
+
"wikiversity.org",
|
22 |
+
"wikitravel.org",
|
23 |
+
"wikinews.org",
|
24 |
+
"wiktionary.org",
|
25 |
+
"wikipedia.org",
|
26 |
+
],
|
27 |
+
"Official News": [
|
28 |
+
"bbc.com",
|
29 |
+
"cnn.com",
|
30 |
+
"nytimes.com",
|
31 |
+
"reuters.com",
|
32 |
+
"theguardian.com",
|
33 |
+
"washingtonpost.com",
|
34 |
+
"foxnews.com",
|
35 |
+
"aljazeera.com",
|
36 |
+
"bloomberg.com",
|
37 |
+
"npr.org",
|
38 |
+
],
|
39 |
+
"Online Learning": [
|
40 |
+
"coursera.org",
|
41 |
+
"edx.org",
|
42 |
+
"udacity.com",
|
43 |
+
"udemy.com",
|
44 |
+
"khanacademy.org",
|
45 |
+
"futurelearn.com",
|
46 |
+
"skillshare.com",
|
47 |
+
"linkedin.com/learning",
|
48 |
+
"pluralsight.com",
|
49 |
+
"codecademy.com",
|
50 |
+
],
|
51 |
+
"Government Official": [
|
52 |
+
"usa.gov",
|
53 |
+
"gov.uk",
|
54 |
+
"europa.eu",
|
55 |
+
"canada.ca",
|
56 |
+
"australia.gov.au",
|
57 |
+
"india.gov.in",
|
58 |
+
"japan.go.jp",
|
59 |
+
"korea.go.kr",
|
60 |
+
"gov.sg",
|
61 |
+
"nz.govt.nz",
|
62 |
+
"defense.gov",
|
63 |
+
".gov",
|
64 |
+
],
|
65 |
+
"Publications": [
|
66 |
+
"scholar.google.com",
|
67 |
+
"pubmed.ncbi.nlm.nih.gov",
|
68 |
+
"researchgate.net",
|
69 |
+
"jstor.org",
|
70 |
+
"ieeexplore.ieee.org",
|
71 |
+
"sciencedirect.com",
|
72 |
+
"arxiv.org",
|
73 |
+
"link.springer.com",
|
74 |
+
"onlinelibrary.wiley.com",
|
75 |
+
"doaj.org",
|
76 |
+
"journals.plos.org/plosone",
|
77 |
+
"journals.sagepub.com",
|
78 |
+
"dl.acm.org",
|
79 |
+
"biorxiv.org",
|
80 |
+
"tandfonline.com",
|
81 |
+
],
|
82 |
+
}
|
83 |
+
|
84 |
+
|
85 |
+
plag_script = """
|
86 |
+
async () => {
|
87 |
+
globalThis.toggleDetails = (event) => {
|
88 |
+
event.preventDefault(); // Prevent the default link behavior
|
89 |
+
let detailsContainer = document.getElementById("detailsContainer");
|
90 |
+
if (detailsContainer.style.display === "none") {
|
91 |
+
detailsContainer.style.display = "block";
|
92 |
+
} else {
|
93 |
+
detailsContainer.style.display = "none";
|
94 |
+
}
|
95 |
+
}
|
96 |
+
}
|
97 |
+
"""
|
nohup.out
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
plagiarism.py
CHANGED
@@ -10,7 +10,8 @@ from bs4 import BeautifulSoup
|
|
10 |
import numpy as np
|
11 |
import concurrent
|
12 |
from multiprocessing import Pool
|
13 |
-
|
|
|
14 |
|
15 |
WORD = re.compile(r"\w+")
|
16 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
@@ -73,10 +74,10 @@ def get_cosine(vec1, vec2):
|
|
73 |
|
74 |
def split_sentence_blocks(text, size):
|
75 |
if size == "Paragraph":
|
76 |
-
blocks = text.split("\n")
|
77 |
return blocks
|
78 |
else:
|
79 |
-
sents = sent_tokenize(text)
|
80 |
return sents
|
81 |
|
82 |
|
@@ -115,12 +116,36 @@ async def parallel_scrap(urls):
|
|
115 |
return results
|
116 |
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
def matching_score(sentence_content_tuple):
|
119 |
sentence, content, score = sentence_content_tuple
|
120 |
if sentence in content:
|
121 |
-
return 1
|
122 |
-
if score > 0.9:
|
123 |
-
|
124 |
else:
|
125 |
n = 5
|
126 |
|
@@ -132,12 +157,28 @@ def matching_score(sentence_content_tuple):
|
|
132 |
|
133 |
ngrams_sentence = split_ngrams(sentence, n)
|
134 |
if len(ngrams_sentence) == 0:
|
135 |
-
return 0
|
136 |
-
ngrams_content =
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
)
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
|
143 |
def process_with_multiprocessing(input_data):
|
@@ -166,12 +207,21 @@ def map_sentence_url(sentences, score_array):
|
|
166 |
return sentenceToMaxURL
|
167 |
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
def google_search(
|
170 |
plag_option,
|
171 |
sentences,
|
172 |
url_count,
|
173 |
score_array,
|
174 |
url_list,
|
|
|
175 |
sorted_date,
|
176 |
domains_to_skip,
|
177 |
api_key,
|
@@ -209,7 +259,9 @@ def google_search(
|
|
209 |
if url not in url_list:
|
210 |
url_list.append(url)
|
211 |
score_array.append([0] * len(sentences))
|
|
|
212 |
url_count[url] = url_count[url] + 1 if url in url_count else 1
|
|
|
213 |
if plag_option == "Standard":
|
214 |
score_array[url_list.index(url)][i] = cosineSim(
|
215 |
sentence, snippet
|
@@ -234,21 +286,22 @@ def plagiarism_check(
|
|
234 |
source_block_size,
|
235 |
):
|
236 |
# api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
|
237 |
-
api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
|
238 |
# api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
|
239 |
# api_key = "AIzaSyCS1WQDMl1IMjaXtwSd_2rA195-Yc4psQE"
|
240 |
# api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
|
241 |
# api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
|
242 |
# api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
|
|
|
243 |
cse_id = "851813e81162b4ed4"
|
244 |
|
245 |
url_scores = []
|
246 |
sentence_scores = []
|
247 |
sentences = split_sentence_blocks(input, source_block_size)
|
248 |
-
print(sentences)
|
249 |
url_count = {}
|
250 |
score_array = []
|
251 |
url_list = []
|
|
|
252 |
date_from = build_date(year_from, month_from, day_from)
|
253 |
date_to = build_date(year_to, month_to, day_to)
|
254 |
sort_date = f"date:r:{date_from}:{date_to}"
|
@@ -259,6 +312,7 @@ def plagiarism_check(
|
|
259 |
url_count,
|
260 |
score_array,
|
261 |
url_list,
|
|
|
262 |
sort_date,
|
263 |
domains_to_skip,
|
264 |
api_key,
|
@@ -273,13 +327,18 @@ def plagiarism_check(
|
|
273 |
for j, sent in enumerate(sentences):
|
274 |
input_data.append((sent, page_content, score_array[i][j]))
|
275 |
scores = process_with_multiprocessing(input_data)
|
|
|
|
|
|
|
|
|
276 |
|
277 |
k = 0
|
278 |
# Update score array for each (soup, sentence)
|
279 |
for i, soup in enumerate(soups):
|
280 |
if soup:
|
281 |
for j, _ in enumerate(sentences):
|
282 |
-
score_array[i][j] = scores[k]
|
|
|
283 |
k += 1
|
284 |
|
285 |
sentenceToMaxURL = map_sentence_url(sentences, score_array)
|
@@ -303,14 +362,35 @@ def plagiarism_check(
|
|
303 |
ind = sentenceToMaxURL[i]
|
304 |
if url_source[ind] > 0.1:
|
305 |
sentence_scores.append(
|
306 |
-
[
|
|
|
|
|
|
|
|
|
|
|
307 |
)
|
308 |
else:
|
309 |
sentence_scores.append([sent, None, url_list[ind], -1])
|
|
|
|
|
310 |
for ind in index_descending:
|
311 |
-
if url_source[ind] > 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
url_scores.append(
|
313 |
-
[
|
|
|
|
|
|
|
|
|
|
|
314 |
)
|
315 |
|
316 |
return sentence_scores, url_scores
|
@@ -342,33 +422,123 @@ def html_highlight(
|
|
342 |
source_block_size,
|
343 |
)
|
344 |
|
345 |
-
html_content = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
prev_idx = None
|
347 |
combined_sentence = ""
|
348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
if idx != prev_idx and prev_idx is not None:
|
350 |
color = color_map[prev_idx - 1]
|
351 |
-
index_part = f
|
352 |
-
formatted_sentence = f
|
353 |
html_content += formatted_sentence
|
354 |
combined_sentence = ""
|
355 |
combined_sentence += " " + sentence
|
356 |
prev_idx = idx
|
357 |
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
if combined_sentence:
|
359 |
color = color_map[prev_idx - 1]
|
360 |
-
index_part =
|
361 |
-
|
|
|
|
|
362 |
html_content += formatted_sentence
|
363 |
|
364 |
html_content += "<hr>"
|
365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
color = color_map[idx - 1]
|
367 |
-
formatted_url = f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
html_content += formatted_url
|
369 |
|
370 |
-
html_content += "</
|
371 |
|
372 |
print("PLAGIARISM PROCESSING TIME: ", time.perf_counter() - start_time)
|
373 |
|
374 |
-
return html_content
|
|
|
10 |
import numpy as np
|
11 |
import concurrent
|
12 |
from multiprocessing import Pool
|
13 |
+
from const import url_types
|
14 |
+
from collections import defaultdict
|
15 |
|
16 |
WORD = re.compile(r"\w+")
|
17 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
74 |
|
75 |
def split_sentence_blocks(text, size):
|
76 |
if size == "Paragraph":
|
77 |
+
blocks = text.strip().split("\n")
|
78 |
return blocks
|
79 |
else:
|
80 |
+
sents = sent_tokenize(text.strip())
|
81 |
return sents
|
82 |
|
83 |
|
|
|
116 |
return results
|
117 |
|
118 |
|
119 |
+
def merge_ngrams_into_sentence(ngrams):
|
120 |
+
if ngrams == None:
|
121 |
+
return ""
|
122 |
+
if len(ngrams) > 20:
|
123 |
+
ngrams = ngrams[:20]
|
124 |
+
merged_sentence = []
|
125 |
+
i = 0
|
126 |
+
for ngram in ngrams:
|
127 |
+
overlap = len(set(ngram) & set(merged_sentence[-len(ngram) :]))
|
128 |
+
if overlap == 0:
|
129 |
+
merged_sentence.extend(ngram)
|
130 |
+
elif overlap < len(ngram):
|
131 |
+
merged_sentence.extend(ngram[overlap:])
|
132 |
+
return " ".join(merged_sentence)
|
133 |
+
|
134 |
+
|
135 |
+
def remove_ngrams_after(ngrams, target_ngram):
|
136 |
+
try:
|
137 |
+
index = ngrams.index(target_ngram)
|
138 |
+
return ngrams[: index + 1]
|
139 |
+
except ValueError:
|
140 |
+
return None
|
141 |
+
|
142 |
+
|
143 |
def matching_score(sentence_content_tuple):
|
144 |
sentence, content, score = sentence_content_tuple
|
145 |
if sentence in content:
|
146 |
+
return 1, sentence
|
147 |
+
# if score > 0.9:
|
148 |
+
# return score
|
149 |
else:
|
150 |
n = 5
|
151 |
|
|
|
157 |
|
158 |
ngrams_sentence = split_ngrams(sentence, n)
|
159 |
if len(ngrams_sentence) == 0:
|
160 |
+
return 0, ""
|
161 |
+
ngrams_content = [tuple(ngram) for ngram in split_ngrams(content, n)]
|
162 |
+
matched_content_ngrams = []
|
163 |
+
found = False
|
164 |
+
last_found = None
|
165 |
+
for ngram in ngrams_sentence:
|
166 |
+
for ngram_content in ngrams_content:
|
167 |
+
if tuple(ngram) == ngram_content:
|
168 |
+
found = True
|
169 |
+
last_found = ngram_content
|
170 |
+
if found:
|
171 |
+
matched_content_ngrams.append(ngram_content)
|
172 |
+
matched_content_ngrams = remove_ngrams_after(
|
173 |
+
matched_content_ngrams, last_found
|
174 |
)
|
175 |
+
matched_content = merge_ngrams_into_sentence(matched_content_ngrams)
|
176 |
+
|
177 |
+
matched_ngrams = [
|
178 |
+
1 for ngram in ngrams_sentence if tuple(ngram) in ngrams_content
|
179 |
+
]
|
180 |
+
matched_count = sum(matched_ngrams)
|
181 |
+
return matched_count / len(ngrams_sentence), matched_content
|
182 |
|
183 |
|
184 |
def process_with_multiprocessing(input_data):
|
|
|
207 |
return sentenceToMaxURL
|
208 |
|
209 |
|
210 |
+
def check_url_category(url):
|
211 |
+
for category, urls in url_types.items():
|
212 |
+
for u in urls:
|
213 |
+
if u in url:
|
214 |
+
return category
|
215 |
+
return "Internet Source"
|
216 |
+
|
217 |
+
|
218 |
def google_search(
|
219 |
plag_option,
|
220 |
sentences,
|
221 |
url_count,
|
222 |
score_array,
|
223 |
url_list,
|
224 |
+
snippets,
|
225 |
sorted_date,
|
226 |
domains_to_skip,
|
227 |
api_key,
|
|
|
259 |
if url not in url_list:
|
260 |
url_list.append(url)
|
261 |
score_array.append([0] * len(sentences))
|
262 |
+
snippets.append([""] * len(sentences))
|
263 |
url_count[url] = url_count[url] + 1 if url in url_count else 1
|
264 |
+
snippets[url_list.index(url)][i] = snippet
|
265 |
if plag_option == "Standard":
|
266 |
score_array[url_list.index(url)][i] = cosineSim(
|
267 |
sentence, snippet
|
|
|
286 |
source_block_size,
|
287 |
):
|
288 |
# api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
|
289 |
+
# api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
|
290 |
# api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
|
291 |
# api_key = "AIzaSyCS1WQDMl1IMjaXtwSd_2rA195-Yc4psQE"
|
292 |
# api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
|
293 |
# api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
|
294 |
# api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
|
295 |
+
api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
|
296 |
cse_id = "851813e81162b4ed4"
|
297 |
|
298 |
url_scores = []
|
299 |
sentence_scores = []
|
300 |
sentences = split_sentence_blocks(input, source_block_size)
|
|
|
301 |
url_count = {}
|
302 |
score_array = []
|
303 |
url_list = []
|
304 |
+
snippets = []
|
305 |
date_from = build_date(year_from, month_from, day_from)
|
306 |
date_to = build_date(year_to, month_to, day_to)
|
307 |
sort_date = f"date:r:{date_from}:{date_to}"
|
|
|
312 |
url_count,
|
313 |
score_array,
|
314 |
url_list,
|
315 |
+
snippets,
|
316 |
sort_date,
|
317 |
domains_to_skip,
|
318 |
api_key,
|
|
|
327 |
for j, sent in enumerate(sentences):
|
328 |
input_data.append((sent, page_content, score_array[i][j]))
|
329 |
scores = process_with_multiprocessing(input_data)
|
330 |
+
matched_sentence_array = [
|
331 |
+
["" for _ in range(len(score_array[0]))]
|
332 |
+
for _ in range(len(score_array))
|
333 |
+
]
|
334 |
|
335 |
k = 0
|
336 |
# Update score array for each (soup, sentence)
|
337 |
for i, soup in enumerate(soups):
|
338 |
if soup:
|
339 |
for j, _ in enumerate(sentences):
|
340 |
+
score_array[i][j] = scores[k][0]
|
341 |
+
matched_sentence_array[i][j] = scores[k][1]
|
342 |
k += 1
|
343 |
|
344 |
sentenceToMaxURL = map_sentence_url(sentences, score_array)
|
|
|
362 |
ind = sentenceToMaxURL[i]
|
363 |
if url_source[ind] > 0.1:
|
364 |
sentence_scores.append(
|
365 |
+
[
|
366 |
+
sent,
|
367 |
+
round(url_source[ind] * 100, 2),
|
368 |
+
url_list[ind],
|
369 |
+
urlMap[ind],
|
370 |
+
]
|
371 |
)
|
372 |
else:
|
373 |
sentence_scores.append([sent, None, url_list[ind], -1])
|
374 |
+
print("SNIPPETS: ", snippets)
|
375 |
+
snippets = [[item for item in sublist if item] for sublist in snippets]
|
376 |
for ind in index_descending:
|
377 |
+
if url_source[ind] > 0.35:
|
378 |
+
matched_sentence_array = [
|
379 |
+
[item for item in sublist if item]
|
380 |
+
for sublist in matched_sentence_array
|
381 |
+
]
|
382 |
+
matched_sentence = "...".join(
|
383 |
+
[sent for sent in matched_sentence_array[ind]]
|
384 |
+
)
|
385 |
+
if matched_sentence == "":
|
386 |
+
matched_sentence = "...".join([sent for sent in snippets[ind]])
|
387 |
url_scores.append(
|
388 |
+
[
|
389 |
+
url_list[ind],
|
390 |
+
round(url_source[ind] * 100, 2),
|
391 |
+
urlMap[ind],
|
392 |
+
matched_sentence,
|
393 |
+
]
|
394 |
)
|
395 |
|
396 |
return sentence_scores, url_scores
|
|
|
422 |
source_block_size,
|
423 |
)
|
424 |
|
425 |
+
html_content = """
|
426 |
+
<link href='https://fonts.googleapis.com/css?family=Roboto' rel='stylesheet'>
|
427 |
+
<div style='font-family: {font}; border: 2px solid black; padding: 10px; color: #FFFFFF;'>
|
428 |
+
<html>
|
429 |
+
<head>
|
430 |
+
<title>Toggle Details</title>
|
431 |
+
<style>
|
432 |
+
.score-container {
|
433 |
+
display: flex;
|
434 |
+
justify-content: space-around;
|
435 |
+
align-items: left;
|
436 |
+
padding: 20px;
|
437 |
+
}
|
438 |
+
.score-item {
|
439 |
+
text-align: center;
|
440 |
+
padding: 10px;
|
441 |
+
background-color: #636362;
|
442 |
+
border-radius: 5px;
|
443 |
+
flex-grow: 1;
|
444 |
+
margin: 0 5px;
|
445 |
+
}
|
446 |
+
.details {
|
447 |
+
display: none;
|
448 |
+
padding: 10px;
|
449 |
+
}
|
450 |
+
.url-link {
|
451 |
+
font-size: 1.2em;
|
452 |
+
}
|
453 |
+
.url-link span {
|
454 |
+
margin-right: 10px;
|
455 |
+
}
|
456 |
+
.toggle-button {
|
457 |
+
color: #333;
|
458 |
+
border: none;
|
459 |
+
padding: 5px 10px;
|
460 |
+
text-align: center;
|
461 |
+
text-decoration: none;
|
462 |
+
display: inline-block;
|
463 |
+
cursor: pointer;
|
464 |
+
}
|
465 |
+
</style>
|
466 |
+
</head>
|
467 |
+
"""
|
468 |
+
|
469 |
prev_idx = None
|
470 |
combined_sentence = ""
|
471 |
+
total_score = 0
|
472 |
+
total_count = 0
|
473 |
+
category_scores = defaultdict(list)
|
474 |
+
for sentence, score, url, idx in sentence_scores:
|
475 |
+
category = check_url_category(url)
|
476 |
+
if score is None:
|
477 |
+
total_score += 0
|
478 |
+
else:
|
479 |
+
total_score += score
|
480 |
+
total_count += 1
|
481 |
+
category_scores[category].append(score)
|
482 |
if idx != prev_idx and prev_idx is not None:
|
483 |
color = color_map[prev_idx - 1]
|
484 |
+
index_part = f"<span>[{prev_idx}]</span>"
|
485 |
+
formatted_sentence = f'<p style="background-color: {color}; padding: 2px;">{combined_sentence} {index_part}</p>'
|
486 |
html_content += formatted_sentence
|
487 |
combined_sentence = ""
|
488 |
combined_sentence += " " + sentence
|
489 |
prev_idx = idx
|
490 |
|
491 |
+
total_average_score = round(total_score / total_count, 2)
|
492 |
+
category_averages = {
|
493 |
+
category: round((sum(scores) / len(scores)), 2)
|
494 |
+
for category, scores in category_scores.items()
|
495 |
+
}
|
496 |
+
|
497 |
if combined_sentence:
|
498 |
color = color_map[prev_idx - 1]
|
499 |
+
index_part = ""
|
500 |
+
if prev_idx != -1:
|
501 |
+
index_part = f"<span>[{prev_idx}]</span>"
|
502 |
+
formatted_sentence = f'<p style="background-color: {color}; padding: 2px;">{combined_sentence} {index_part}</p>'
|
503 |
html_content += formatted_sentence
|
504 |
|
505 |
html_content += "<hr>"
|
506 |
+
|
507 |
+
html_content += f"""
|
508 |
+
<div class="score-container">
|
509 |
+
<div class="score-item">
|
510 |
+
<h3>Overall Similarity</h3>
|
511 |
+
<p>{total_average_score}%</p>
|
512 |
+
</div>
|
513 |
+
"""
|
514 |
+
for category, score in category_averages.items():
|
515 |
+
html_content += f"""
|
516 |
+
<div class="score-item"><h3>{category}</h3><p>{score}%</p></div>
|
517 |
+
"""
|
518 |
+
html_content += "</div>"
|
519 |
+
|
520 |
+
for url, score, idx, sentence in url_scores:
|
521 |
+
url_category = check_url_category(url)
|
522 |
color = color_map[idx - 1]
|
523 |
+
formatted_url = f"""
|
524 |
+
<p style="background-color: {color}; padding: 5px; font-size: 1.2em">[{idx}] <b>{url}</b></p><p><i>{url_category}</i></p>
|
525 |
+
<p> --- <b>Matching Score: </b>{score}%</p>
|
526 |
+
<p> --- <b>Original Source Content: </b>{sentence}</p>
|
527 |
+
"""
|
528 |
+
# formatted_url = f"""
|
529 |
+
# <div class="url-link">
|
530 |
+
# <p style="background-color: {color}; padding: 5px; font-size: 1.2em">[{idx}] <b>{url}</b></p><p>{url_category}</p>
|
531 |
+
# <a href="#" onclick="toggleDetails(event)" class="toggle-button">></a>
|
532 |
+
# </div>
|
533 |
+
# <div id="detailsContainer" class="details">
|
534 |
+
# <p> --- <b>Matching Score: </b>{score}%</p>
|
535 |
+
# <p> --- <b>Original Source Content: </b>{sentence}</p>
|
536 |
+
# </div>
|
537 |
+
# """
|
538 |
html_content += formatted_url
|
539 |
|
540 |
+
html_content += "</html>"
|
541 |
|
542 |
print("PLAGIARISM PROCESSING TIME: ", time.perf_counter() - start_time)
|
543 |
|
544 |
+
return html_content
|