Spaces:
Sleeping
Sleeping
aliasgerovs
commited on
Commit
·
1c49ee1
1
Parent(s):
2bd675e
Updated mc with isotonic.
Browse files- nohup.out +44 -0
- predictors.py +12 -7
nohup.out
CHANGED
@@ -99,3 +99,47 @@ error: externally-managed-environment
|
|
99 |
|
100 |
note: If you believe this is a mistake, please contact your Python installation or OS distribution provider. You can override this, at the risk of breaking your Python installation or OS, by passing --break-system-packages.
|
101 |
hint: See PEP 668 for the detailed specification.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
note: If you believe this is a mistake, please contact your Python installation or OS distribution provider. You can override this, at the risk of breaking your Python installation or OS, by passing --break-system-packages.
|
101 |
hint: See PEP 668 for the detailed specification.
|
102 |
+
2024-03-27 15:11:04.526493: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
|
103 |
+
2024-03-27 15:11:04.526578: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
|
104 |
+
2024-03-27 15:11:04.528324: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
|
105 |
+
2024-03-27 15:11:04.536839: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
|
106 |
+
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
|
107 |
+
2024-03-27 15:11:05.847612: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
|
108 |
+
[nltk_data] Downloading package punkt to /root/nltk_data...
|
109 |
+
[nltk_data] Package punkt is already up-to-date!
|
110 |
+
[nltk_data] Downloading package punkt to /root/nltk_data...
|
111 |
+
[nltk_data] Package punkt is already up-to-date!
|
112 |
+
[nltk_data] Downloading package stopwords to /root/nltk_data...
|
113 |
+
[nltk_data] Package stopwords is already up-to-date!
|
114 |
+
[nltk_data] Downloading package punkt to /root/nltk_data...
|
115 |
+
[nltk_data] Package punkt is already up-to-date!
|
116 |
+
[nltk_data] Downloading package punkt to /root/nltk_data...
|
117 |
+
[nltk_data] Package punkt is already up-to-date!
|
118 |
+
[nltk_data] Downloading package stopwords to /root/nltk_data...
|
119 |
+
[nltk_data] Package stopwords is already up-to-date!
|
120 |
+
error: externally-managed-environment
|
121 |
+
|
122 |
+
× This environment is externally managed
|
123 |
+
╰─> To install Python packages system-wide, try apt install
|
124 |
+
python3-xyz, where xyz is the package you are trying to
|
125 |
+
install.
|
126 |
+
|
127 |
+
If you wish to install a non-Debian-packaged Python package,
|
128 |
+
create a virtual environment using python3 -m venv path/to/venv.
|
129 |
+
Then use path/to/venv/bin/python and path/to/venv/bin/pip. Make
|
130 |
+
sure you have python3-full installed.
|
131 |
+
|
132 |
+
If you wish to install a non-Debian packaged Python application,
|
133 |
+
it may be easiest to use pipx install xyz, which will manage a
|
134 |
+
virtual environment for you. Make sure you have pipx installed.
|
135 |
+
|
136 |
+
See /usr/share/doc/python3.11/README.venv for more information.
|
137 |
+
|
138 |
+
note: If you believe this is a mistake, please contact your Python installation or OS distribution provider. You can override this, at the risk of breaking your Python installation or OS, by passing --break-system-packages.
|
139 |
+
hint: See PEP 668 for the detailed specification.
|
140 |
+
/home/aliasgarov/copyright_checker/predictors.py:197: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.
|
141 |
+
probas = F.softmax(tensor_logits).detach().cpu().numpy()
|
142 |
+
/home/aliasgarov/copyright_checker/predictors.py:197: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.
|
143 |
+
probas = F.softmax(tensor_logits).detach().cpu().numpy()
|
144 |
+
/home/aliasgarov/copyright_checker/predictors.py:197: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.
|
145 |
+
probas = F.softmax(tensor_logits).detach().cpu().numpy()
|
predictors.py
CHANGED
@@ -276,11 +276,11 @@ def predict_bc_scores(input):
|
|
276 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
277 |
bc_score_list = average_bc_scores.tolist()
|
278 |
print(f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}")
|
279 |
-
#
|
280 |
-
|
281 |
-
|
282 |
-
bc_score = {"AI":
|
283 |
-
|
284 |
return bc_score
|
285 |
|
286 |
|
@@ -330,8 +330,13 @@ def predict_1on1_scores(input, models):
|
|
330 |
bc_scores_array = np.array(bc_scores)
|
331 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
332 |
bc_score_list = average_bc_scores.tolist()
|
333 |
-
|
334 |
-
|
|
|
|
|
|
|
|
|
|
|
335 |
# MC SCORE
|
336 |
if len(models) > 1:
|
337 |
print("Starting MC")
|
|
|
276 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
277 |
bc_score_list = average_bc_scores.tolist()
|
278 |
print(f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}")
|
279 |
+
# isotonic regression calibration
|
280 |
+
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
281 |
+
human_score = 1 - ai_score
|
282 |
+
bc_score = {"AI": ai_score, "HUMAN": human_score}
|
283 |
+
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
|
284 |
return bc_score
|
285 |
|
286 |
|
|
|
330 |
bc_scores_array = np.array(bc_scores)
|
331 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
332 |
bc_score_list = average_bc_scores.tolist()
|
333 |
+
print(f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}")
|
334 |
+
# isotonic regression calibration
|
335 |
+
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
336 |
+
human_score = 1 - ai_score
|
337 |
+
bc_score = {"AI": ai_score, "HUMAN": human_score}
|
338 |
+
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
|
339 |
+
|
340 |
# MC SCORE
|
341 |
if len(models) > 1:
|
342 |
print("Starting MC")
|