Spaces:
Running
Running
Update predictors.py
Browse files- predictors.py +297 -1
predictors.py
CHANGED
@@ -11,7 +11,303 @@ import numpy as np
|
|
11 |
import concurrent
|
12 |
from multiprocessing import Pool
|
13 |
from const import url_types
|
14 |
-
from collections import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
WORD = re.compile(r"\w+")
|
17 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
11 |
import concurrent
|
12 |
from multiprocessing import Pool
|
13 |
from const import url_types
|
14 |
+
from collections import defaultdictimport torch
|
15 |
+
import numpy as np
|
16 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
17 |
+
import nltk
|
18 |
+
import torch.nn.functional as F
|
19 |
+
import nltk
|
20 |
+
from scipy.special import softmax
|
21 |
+
import yaml
|
22 |
+
from utils import *
|
23 |
+
import joblib
|
24 |
+
from optimum.bettertransformer import BetterTransformer
|
25 |
+
import gc
|
26 |
+
from cleantext import clean
|
27 |
+
import gradio as gr
|
28 |
+
from tqdm.auto import tqdm
|
29 |
+
from transformers import pipeline
|
30 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
31 |
+
import nltk
|
32 |
+
from nltk.tokenize import sent_tokenize
|
33 |
+
from optimum.pipelines import pipeline
|
34 |
+
|
35 |
+
with open("config.yaml", "r") as file:
|
36 |
+
params = yaml.safe_load(file)
|
37 |
+
|
38 |
+
nltk.download("punkt")
|
39 |
+
nltk.download("stopwords")
|
40 |
+
device_needed = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
42 |
+
print('DEVICE IS :' , device)
|
43 |
+
|
44 |
+
text_bc_model_path = params["TEXT_BC_MODEL_PATH"]
|
45 |
+
text_mc_model_path = params["TEXT_MC_MODEL_PATH"]
|
46 |
+
text_quillbot_model_path = params["TEXT_QUILLBOT_MODEL_PATH"]
|
47 |
+
quillbot_labels = params["QUILLBOT_LABELS"]
|
48 |
+
mc_label_map = params["MC_OUTPUT_LABELS"]
|
49 |
+
mc_token_size = int(params["MC_TOKEN_SIZE"])
|
50 |
+
bc_token_size = int(params["BC_TOKEN_SIZE"])
|
51 |
+
bias_checker_model_name = params['BIAS_CHECKER_MODEL_PATH']
|
52 |
+
bias_corrector_model_name = params['BIAS_CORRECTOR_MODEL_PATH']
|
53 |
+
# access_token = params['HF_TOKEN']
|
54 |
+
|
55 |
+
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
|
56 |
+
text_bc_model = AutoModelForSequenceClassification.from_pretrained(text_bc_model_path).to(device)
|
57 |
+
text_mc_tokenizer = AutoTokenizer.from_pretrained(text_mc_model_path)
|
58 |
+
text_mc_model = AutoModelForSequenceClassification.from_pretrained(text_mc_model_path).to(device)
|
59 |
+
quillbot_tokenizer = AutoTokenizer.from_pretrained(text_quillbot_model_path)
|
60 |
+
quillbot_model = AutoModelForSequenceClassification.from_pretrained(text_quillbot_model_path).to(device)
|
61 |
+
|
62 |
+
# proxy models for explainability
|
63 |
+
mini_bc_model_name = "polygraf-ai/bc-model"
|
64 |
+
bc_tokenizer_mini = AutoTokenizer.from_pretrained(mini_bc_model_name)
|
65 |
+
bc_model_mini = AutoModelForSequenceClassification.from_pretrained(mini_bc_model_name).to(device_needed)
|
66 |
+
mini_humanizer_model_name = "polygraf-ai/humanizer-model"
|
67 |
+
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(mini_humanizer_model_name)
|
68 |
+
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(mini_humanizer_model_name).to(device_needed)
|
69 |
+
|
70 |
+
bc_model_mini = BetterTransformer.transform(bc_model_mini)
|
71 |
+
humanizer_model_mini = BetterTransformer.transform(humanizer_model_mini)
|
72 |
+
text_bc_model = BetterTransformer.transform(text_bc_model)
|
73 |
+
text_mc_model = BetterTransformer.transform(text_mc_model)
|
74 |
+
quillbot_model = BetterTransformer.transform(quillbot_model)
|
75 |
+
|
76 |
+
bias_model_checker = AutoModelForSequenceClassification.from_pretrained(bias_checker_model_name)
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained(bias_checker_model_name)
|
78 |
+
bias_model_checker = BetterTransformer.transform(bias_model_checker, keep_original_model=False)
|
79 |
+
bias_checker = pipeline(
|
80 |
+
"text-classification",
|
81 |
+
model=bias_checker_model_name,
|
82 |
+
tokenizer=bias_checker_model_name,
|
83 |
+
)
|
84 |
+
gc.collect()
|
85 |
+
bias_corrector = pipeline( "text2text-generation", model=bias_corrector_model_name, accelerator="ort")
|
86 |
+
|
87 |
+
# model score calibration
|
88 |
+
iso_reg = joblib.load("isotonic_regression_model.joblib")
|
89 |
+
|
90 |
+
|
91 |
+
def split_text(text: str) -> list:
|
92 |
+
sentences = sent_tokenize(text)
|
93 |
+
return [[sentence] for sentence in sentences]
|
94 |
+
|
95 |
+
def correct_text(text: str, bias_checker, bias_corrector, separator: str = " ") -> tuple:
|
96 |
+
sentence_batches = split_text(text)
|
97 |
+
corrected_text = []
|
98 |
+
corrections = []
|
99 |
+
for batch in tqdm(sentence_batches, total=len(sentence_batches), desc="correcting text.."):
|
100 |
+
raw_text = " ".join(batch)
|
101 |
+
results = bias_checker(raw_text)
|
102 |
+
if results[0]["label"] != "LABEL_1" or (results[0]["label"] == "LABEL_1" and results[0]["score"] < 0.9):
|
103 |
+
corrected_batch = bias_corrector(raw_text)
|
104 |
+
corrected_version = corrected_batch[0]["generated_text"]
|
105 |
+
corrected_text.append(corrected_version)
|
106 |
+
corrections.append((raw_text, corrected_version))
|
107 |
+
else:
|
108 |
+
corrected_text.append(raw_text)
|
109 |
+
corrected_text = separator.join(corrected_text)
|
110 |
+
return corrected_text, corrections
|
111 |
+
|
112 |
+
def update(text: str):
|
113 |
+
text = clean(text, lower=False)
|
114 |
+
corrected_text, corrections = correct_text(text, bias_checker, bias_corrector)
|
115 |
+
corrections_display = "".join([f"{corr}" for orig, corr in corrections])
|
116 |
+
if corrections_display == "":
|
117 |
+
corrections_display = text
|
118 |
+
return corrections_display
|
119 |
+
|
120 |
+
def update_main(text: str):
|
121 |
+
text = clean(text, lower=False)
|
122 |
+
corrected_text, corrections = correct_text(text, bias_checker, bias_corrector)
|
123 |
+
corrections_display = "\n\n".join([f"Original: {orig}\nCorrected: {corr}" for orig, corr in corrections])
|
124 |
+
return corrected_text, corrections_display
|
125 |
+
|
126 |
+
def split_text(text: str) -> list:
|
127 |
+
sentences = sent_tokenize(text)
|
128 |
+
return [[sentence] for sentence in sentences]
|
129 |
+
|
130 |
+
def get_token_length(tokenizer, sentence):
|
131 |
+
return len(tokenizer.tokenize(sentence))
|
132 |
+
|
133 |
+
def split_text_allow_complete_sentences_nltk(text, type_det="bc"):
|
134 |
+
sentences = sent_tokenize(text)
|
135 |
+
chunks = []
|
136 |
+
current_chunk = []
|
137 |
+
current_length = 0
|
138 |
+
if type_det == "bc":
|
139 |
+
tokenizer = text_bc_tokenizer
|
140 |
+
max_tokens = bc_token_size
|
141 |
+
elif type_det == "mc":
|
142 |
+
tokenizer = text_mc_tokenizer
|
143 |
+
max_tokens = mc_token_size
|
144 |
+
|
145 |
+
elif type_det == "quillbot":
|
146 |
+
tokenizer = quillbot_tokenizer
|
147 |
+
max_tokens = 256
|
148 |
+
|
149 |
+
def add_sentence_to_chunk(sentence):
|
150 |
+
nonlocal current_chunk, current_length
|
151 |
+
sentence_length = get_token_length(tokenizer, sentence)
|
152 |
+
if current_length + sentence_length > max_tokens:
|
153 |
+
chunks.append((current_chunk, current_length))
|
154 |
+
current_chunk = []
|
155 |
+
current_length = 0
|
156 |
+
current_chunk.append(sentence)
|
157 |
+
current_length += sentence_length
|
158 |
+
|
159 |
+
for sentence in sentences:
|
160 |
+
add_sentence_to_chunk(sentence)
|
161 |
+
if current_chunk:
|
162 |
+
chunks.append((current_chunk, current_length))
|
163 |
+
adjusted_chunks = []
|
164 |
+
while chunks:
|
165 |
+
chunk = chunks.pop(0)
|
166 |
+
if len(chunks) > 0 and chunk[1] < max_tokens / 2:
|
167 |
+
next_chunk = chunks.pop(0)
|
168 |
+
combined_length = chunk[1] + next_chunk[1]
|
169 |
+
if combined_length <= max_tokens:
|
170 |
+
adjusted_chunks.append((chunk[0] + next_chunk[0], combined_length))
|
171 |
+
else:
|
172 |
+
adjusted_chunks.append(chunk)
|
173 |
+
chunks.insert(0, next_chunk)
|
174 |
+
else:
|
175 |
+
adjusted_chunks.append(chunk)
|
176 |
+
result_chunks = [" ".join(chunk[0]) for chunk in adjusted_chunks]
|
177 |
+
return result_chunks
|
178 |
+
|
179 |
+
|
180 |
+
def predict_quillbot(text, bias_buster_selected):
|
181 |
+
if bias_buster_selected:
|
182 |
+
text = update(text)
|
183 |
+
with torch.no_grad():
|
184 |
+
quillbot_model.eval()
|
185 |
+
tokenized_text = quillbot_tokenizer(
|
186 |
+
text,
|
187 |
+
padding="max_length",
|
188 |
+
truncation=True,
|
189 |
+
max_length=256,
|
190 |
+
return_tensors="pt",
|
191 |
+
).to(device)
|
192 |
+
output = quillbot_model(**tokenized_text)
|
193 |
+
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
|
194 |
+
q_score = {
|
195 |
+
"Humanized": output_norm[1].item(),
|
196 |
+
"Original": output_norm[0].item(),
|
197 |
+
}
|
198 |
+
return q_score
|
199 |
+
|
200 |
+
|
201 |
+
def predict_for_explainanility(text, model_type=None):
|
202 |
+
if model_type == "quillbot":
|
203 |
+
cleaning = False
|
204 |
+
max_length = 256
|
205 |
+
model = humanizer_model_mini
|
206 |
+
tokenizer = humanizer_tokenizer_mini
|
207 |
+
elif model_type == "bc":
|
208 |
+
cleaning = True
|
209 |
+
max_length = bc_token_size
|
210 |
+
model = bc_model_mini
|
211 |
+
tokenizer = bc_tokenizer_mini
|
212 |
+
else:
|
213 |
+
raise ValueError("Invalid model type")
|
214 |
+
with torch.no_grad():
|
215 |
+
if cleaning:
|
216 |
+
text = [remove_special_characters(t) for t in text]
|
217 |
+
tokenized_text = tokenizer(
|
218 |
+
text,
|
219 |
+
return_tensors="pt",
|
220 |
+
padding="max_length",
|
221 |
+
truncation=True,
|
222 |
+
max_length=max_length,
|
223 |
+
).to(device_needed)
|
224 |
+
outputs = model(**tokenized_text)
|
225 |
+
tensor_logits = outputs[0]
|
226 |
+
probas = F.softmax(tensor_logits).detach().cpu().numpy()
|
227 |
+
return probas
|
228 |
+
|
229 |
+
|
230 |
+
def predict_bc(model, tokenizer, text):
|
231 |
+
with torch.no_grad():
|
232 |
+
model.eval()
|
233 |
+
tokens = text_bc_tokenizer(
|
234 |
+
text,
|
235 |
+
padding="max_length",
|
236 |
+
truncation=True,
|
237 |
+
max_length=bc_token_size,
|
238 |
+
return_tensors="pt",
|
239 |
+
).to(device)
|
240 |
+
output = model(**tokens)
|
241 |
+
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
|
242 |
+
return output_norm
|
243 |
+
|
244 |
+
|
245 |
+
def predict_mc(model, tokenizer, text):
|
246 |
+
with torch.no_grad():
|
247 |
+
model.eval()
|
248 |
+
tokens = text_mc_tokenizer(
|
249 |
+
text,
|
250 |
+
padding="max_length",
|
251 |
+
truncation=True,
|
252 |
+
return_tensors="pt",
|
253 |
+
max_length=mc_token_size,
|
254 |
+
).to(device)
|
255 |
+
output = model(**tokens)
|
256 |
+
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
|
257 |
+
return output_norm
|
258 |
+
|
259 |
+
|
260 |
+
def predict_bc_scores(input):
|
261 |
+
bc_scores = []
|
262 |
+
samples_len_bc = len(
|
263 |
+
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
264 |
+
)
|
265 |
+
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
266 |
+
for i in range(samples_len_bc):
|
267 |
+
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
268 |
+
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
|
269 |
+
bc_scores.append(bc_score)
|
270 |
+
bc_scores_array = np.array(bc_scores)
|
271 |
+
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
272 |
+
bc_score_list = average_bc_scores.tolist()
|
273 |
+
print(
|
274 |
+
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
|
275 |
+
)
|
276 |
+
# isotonic regression calibration
|
277 |
+
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
278 |
+
human_score = 1 - ai_score
|
279 |
+
bc_score = {"AI": ai_score, "HUMAN": human_score}
|
280 |
+
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
|
281 |
+
print(f"Input Text: {cleaned_text_bc}")
|
282 |
+
return bc_score
|
283 |
+
|
284 |
+
|
285 |
+
def predict_mc_scores(input):
|
286 |
+
# BC SCORE
|
287 |
+
bc_scores = []
|
288 |
+
samples_len_bc = len(
|
289 |
+
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
290 |
+
)
|
291 |
+
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
292 |
+
for i in range(samples_len_bc):
|
293 |
+
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
294 |
+
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
|
295 |
+
bc_scores.append(bc_score)
|
296 |
+
bc_scores_array = np.array(bc_scores)
|
297 |
+
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
298 |
+
bc_score_list = average_bc_scores.tolist()
|
299 |
+
print(
|
300 |
+
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
|
301 |
+
)
|
302 |
+
# isotonic regression calibration
|
303 |
+
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
304 |
+
human_score = 1 - ai_score
|
305 |
+
bc_score = {"AI": ai_score, "HUMAN": human_score}
|
306 |
+
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
|
307 |
+
mc_scores = []
|
308 |
+
segments_mc = split_text_allow_complete_sentences_nltk(
|
309 |
+
input, type_det="mc"
|
310 |
+
|
311 |
|
312 |
WORD = re.compile(r"\w+")
|
313 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|