minko186 commited on
Commit
2d8d036
·
1 Parent(s): 394a4ce

Delete analysis.py

Browse files
Files changed (1) hide show
  1. analysis.py +0 -78
analysis.py DELETED
@@ -1,78 +0,0 @@
1
- import requests
2
- import httpx
3
- import torch
4
- import re
5
- from bs4 import BeautifulSoup
6
- import numpy as np
7
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
8
- import asyncio
9
- from scipy.special import softmax
10
- from evaluate import load
11
- from datetime import date
12
- import nltk
13
- import fitz
14
- from transformers import GPT2LMHeadModel, GPT2TokenizerFast
15
- import nltk, spacy, subprocess, torch
16
- import plotly.graph_objects as go
17
- import torch.nn.functional as F
18
- import nltk
19
- from unidecode import unidecode
20
- import time
21
- import yaml
22
- import nltk
23
- import os
24
- from explainability import *
25
- from dotenv import load_dotenv
26
- nltk.download('punkt')
27
- nltk.download('stopwords')
28
- load_dotenv()
29
- device = "cuda" if torch.cuda.is_available() else "cpu"
30
- readability_model_id = os.getenv('READABILITY_MODEL_ID')
31
- gpt2_model = GPT2LMHeadModel.from_pretrained(readability_model_id).to(device)
32
- gpt2_tokenizer = GPT2TokenizerFast.from_pretrained(readability_model_id)
33
-
34
- def depth_analysis(input_text):
35
- processed_words = preprocess_text1(input_text)
36
- ttr_value = vocabulary_richness_ttr(processed_words)
37
- gunning_fog = calculate_gunning_fog(input_text)
38
- gunning_fog_norm = normalize(gunning_fog, min_value=0, max_value=20)
39
- words, sentences = preprocess_text2(input_text)
40
- average_sentence_length = calculate_average_sentence_length(sentences)
41
- average_word_length = calculate_average_word_length(words)
42
- average_sentence_length_norm = normalize(average_sentence_length, min_value=0, max_value=40)
43
- average_word_length_norm = normalize(average_word_length, min_value=0, max_value=8)
44
- average_tree_depth = calculate_syntactic_tree_depth(nlp, input_text)
45
- average_tree_depth_norm = normalize(average_tree_depth, min_value=0, max_value=10)
46
- perplexity = calculate_perplexity(input_text, gpt2_model, gpt2_tokenizer, device)
47
- perplexity_norm = normalize(perplexity, min_value=0, max_value=30)
48
-
49
- features = {
50
- "readability": gunning_fog_norm,
51
- "syntactic tree depth": average_tree_depth_norm,
52
- "vocabulary richness": ttr_value,
53
- "perplexity": perplexity_norm,
54
- "average sentence length": average_sentence_length_norm,
55
- "average word length": average_word_length_norm,
56
- }
57
- fig = go.Figure()
58
- fig.add_trace(go.Scatterpolar(
59
- r=list(features.values()),
60
- theta=list(features.keys()),
61
- fill='toself',
62
- name='Radar Plot'
63
- ))
64
- fig.update_layout(
65
- polar=dict(
66
- radialaxis=dict(
67
- visible=True,
68
- range=[0, 100],
69
- )),
70
- showlegend=False,
71
- margin=dict(
72
- l=10,
73
- r=20,
74
- b=10,
75
- t=10,
76
- ),
77
- )
78
- return fig