Spaces:
Runtime error
Runtime error
refactored plagiarism
Browse files- plagiarism.py +149 -184
- predictors.py +41 -29
- utils.py +2 -22
plagiarism.py
CHANGED
|
@@ -16,37 +16,36 @@ WORD = re.compile(r"\w+")
|
|
| 16 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 17 |
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
-
# converts given text into a vector
|
| 41 |
def text_to_vector(text):
|
| 42 |
-
# uses the Regular expression above and gets all words
|
| 43 |
words = WORD.findall(text)
|
| 44 |
-
# returns a counter of all the words (count of number of occurences)
|
| 45 |
return Counter(words)
|
| 46 |
|
| 47 |
|
| 48 |
-
# returns cosine similarity of two words
|
| 49 |
-
# uses: text_to_vector(text) and get_cosine(v1,v2)
|
| 50 |
def cosineSim(text1, text2):
|
| 51 |
vector1 = text_to_vector(text1)
|
| 52 |
vector2 = text_to_vector(text2)
|
|
@@ -55,75 +54,16 @@ def cosineSim(text1, text2):
|
|
| 55 |
return cosine
|
| 56 |
|
| 57 |
|
| 58 |
-
def
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
embedding_2 = model.encode(text2, convert_to_tensor=True)
|
| 69 |
-
|
| 70 |
-
o = util.pytorch_cos_sim(embedding_1, embedding_2)
|
| 71 |
-
return o.item()
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def google_search(
|
| 75 |
-
plag_option,
|
| 76 |
-
sentences,
|
| 77 |
-
url_count,
|
| 78 |
-
score_array,
|
| 79 |
-
url_list,
|
| 80 |
-
sorted_date,
|
| 81 |
-
domains_to_skip,
|
| 82 |
-
api_key,
|
| 83 |
-
cse_id,
|
| 84 |
-
**kwargs,
|
| 85 |
-
):
|
| 86 |
-
service = build("customsearch", "v1", developerKey=api_key)
|
| 87 |
-
for i, sentence in enumerate(sentences):
|
| 88 |
-
results = (
|
| 89 |
-
service.cse()
|
| 90 |
-
.list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
|
| 91 |
-
.execute()
|
| 92 |
-
)
|
| 93 |
-
if "items" in results and len(results["items"]) > 0:
|
| 94 |
-
for count, link in enumerate(results["items"]):
|
| 95 |
-
# stop after 3 pages
|
| 96 |
-
if count >= 3:
|
| 97 |
-
break
|
| 98 |
-
# skip user selected domains
|
| 99 |
-
if any(
|
| 100 |
-
("." + domain) in link["link"] for domain in domains_to_skip
|
| 101 |
-
):
|
| 102 |
-
continue
|
| 103 |
-
# clean up snippet of '...'
|
| 104 |
-
snippet = link["snippet"]
|
| 105 |
-
ind = snippet.find("...")
|
| 106 |
-
if ind < 20 and ind > 9:
|
| 107 |
-
snippet = snippet[ind + len("... ") :]
|
| 108 |
-
ind = snippet.find("...")
|
| 109 |
-
if ind > len(snippet) - 5:
|
| 110 |
-
snippet = snippet[:ind]
|
| 111 |
-
|
| 112 |
-
# update cosine similarity between snippet and given text
|
| 113 |
-
url = link["link"]
|
| 114 |
-
if url not in url_list:
|
| 115 |
-
url_list.append(url)
|
| 116 |
-
score_array.append([0] * len(sentences))
|
| 117 |
-
url_count[url] = url_count[url] + 1 if url in url_count else 1
|
| 118 |
-
if plag_option == "Standard":
|
| 119 |
-
score_array[url_list.index(url)][i] = cosineSim(
|
| 120 |
-
sentence, snippet
|
| 121 |
-
)
|
| 122 |
-
else:
|
| 123 |
-
score_array[url_list.index(url)][i] = sentence_similarity(
|
| 124 |
-
sentence, snippet
|
| 125 |
-
)
|
| 126 |
-
return url_count, score_array
|
| 127 |
|
| 128 |
|
| 129 |
def split_sentence_blocks(text):
|
|
@@ -138,49 +78,32 @@ def split_sentence_blocks(text):
|
|
| 138 |
return two_sents
|
| 139 |
|
| 140 |
|
| 141 |
-
months = {
|
| 142 |
-
"January": "01",
|
| 143 |
-
"February": "02",
|
| 144 |
-
"March": "03",
|
| 145 |
-
"April": "04",
|
| 146 |
-
"May": "05",
|
| 147 |
-
"June": "06",
|
| 148 |
-
"July": "07",
|
| 149 |
-
"August": "08",
|
| 150 |
-
"September": "09",
|
| 151 |
-
"October": "10",
|
| 152 |
-
"November": "11",
|
| 153 |
-
"December": "12",
|
| 154 |
-
}
|
| 155 |
-
|
| 156 |
-
|
| 157 |
def build_date(year=2024, month="March", day=1):
|
| 158 |
return f"{year}{months[month]}{day}"
|
| 159 |
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
async def get_url_data(url, client):
|
| 162 |
try:
|
| 163 |
r = await client.get(url)
|
| 164 |
-
# print(r.status_code)
|
| 165 |
if r.status_code == 200:
|
| 166 |
-
# print("in")
|
| 167 |
soup = BeautifulSoup(r.content, "html.parser")
|
| 168 |
return soup
|
| 169 |
except Exception:
|
| 170 |
return None
|
| 171 |
|
| 172 |
|
| 173 |
-
def remove_punc(text):
|
| 174 |
-
res = re.sub(r"[^\w\s]", "", text)
|
| 175 |
-
return res
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
def split_ngrams(text, n):
|
| 179 |
-
# return n-grams of size n
|
| 180 |
-
words = text.split()
|
| 181 |
-
return [words[i : i + n] for i in range(len(words) - n + 1)]
|
| 182 |
-
|
| 183 |
-
|
| 184 |
async def parallel_scrap(urls):
|
| 185 |
async with httpx.AsyncClient(timeout=30) as client:
|
| 186 |
tasks = []
|
|
@@ -209,11 +132,6 @@ def process_with_multiprocessing(input_data):
|
|
| 209 |
return scores
|
| 210 |
|
| 211 |
|
| 212 |
-
def print2d(array):
|
| 213 |
-
for row in array:
|
| 214 |
-
print(row)
|
| 215 |
-
|
| 216 |
-
|
| 217 |
def map_sentence_url(sentences, score_array):
|
| 218 |
sentenceToMaxURL = [-1] * len(sentences)
|
| 219 |
for j in range(len(sentences)):
|
|
@@ -234,65 +152,59 @@ def map_sentence_url(sentences, score_array):
|
|
| 234 |
return sentenceToMaxURL
|
| 235 |
|
| 236 |
|
| 237 |
-
def
|
| 238 |
plag_option,
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
month_to,
|
| 245 |
-
day_to,
|
| 246 |
domains_to_skip,
|
|
|
|
|
|
|
|
|
|
| 247 |
):
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
color = color_map[prev_idx - 1]
|
| 274 |
-
index_part = f'<span style="background-color: {color}; padding: 2px;">[{prev_idx}]</span>'
|
| 275 |
-
formatted_sentence = f"<p>{combined_sentence} {index_part}</p>"
|
| 276 |
-
html_content += formatted_sentence
|
| 277 |
-
combined_sentence = ""
|
| 278 |
-
combined_sentence += " " + sentence
|
| 279 |
-
prev_idx = idx
|
| 280 |
-
|
| 281 |
-
if combined_sentence:
|
| 282 |
-
color = color_map[prev_idx - 1]
|
| 283 |
-
index_part = f'<span style="background-color: {color}; padding: 2px;">[{prev_idx}]</span>'
|
| 284 |
-
formatted_sentence = f"<p>{combined_sentence} {index_part}</p>"
|
| 285 |
-
html_content += formatted_sentence
|
| 286 |
-
|
| 287 |
-
html_content += "<hr>"
|
| 288 |
-
for url, score, idx in url_scores:
|
| 289 |
-
color = color_map[idx - 1]
|
| 290 |
-
formatted_url = f'<p style="background-color: {color}; padding: 5px;">({idx}) <b>{url}</b></p><p> --- Matching Score: {score}%</p>'
|
| 291 |
-
html_content += formatted_url
|
| 292 |
-
|
| 293 |
-
html_content += "</div>"
|
| 294 |
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
|
| 297 |
|
| 298 |
def plagiarism_check(
|
|
@@ -306,11 +218,11 @@ def plagiarism_check(
|
|
| 306 |
day_to,
|
| 307 |
domains_to_skip,
|
| 308 |
):
|
| 309 |
-
api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
|
| 310 |
-
api_key = "AIzaSyCS1WQDMl1IMjaXtwSd_2rA195-Yc4psQE"
|
| 311 |
# api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
|
| 312 |
# api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
|
| 313 |
-
|
| 314 |
cse_id = "851813e81162b4ed4"
|
| 315 |
|
| 316 |
url_scores = []
|
|
@@ -384,3 +296,56 @@ def plagiarism_check(
|
|
| 384 |
)
|
| 385 |
|
| 386 |
return sentence_scores, url_scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 17 |
|
| 18 |
|
| 19 |
+
months = {
|
| 20 |
+
"January": "01",
|
| 21 |
+
"February": "02",
|
| 22 |
+
"March": "03",
|
| 23 |
+
"April": "04",
|
| 24 |
+
"May": "05",
|
| 25 |
+
"June": "06",
|
| 26 |
+
"July": "07",
|
| 27 |
+
"August": "08",
|
| 28 |
+
"September": "09",
|
| 29 |
+
"October": "10",
|
| 30 |
+
"November": "11",
|
| 31 |
+
"December": "12",
|
| 32 |
+
}
|
| 33 |
|
| 34 |
+
color_map = [
|
| 35 |
+
"#cf2323",
|
| 36 |
+
"#eb9d59",
|
| 37 |
+
"#c2ad36",
|
| 38 |
+
"#e1ed72",
|
| 39 |
+
"#c2db76",
|
| 40 |
+
"#a2db76",
|
| 41 |
+
]
|
| 42 |
|
| 43 |
|
|
|
|
| 44 |
def text_to_vector(text):
|
|
|
|
| 45 |
words = WORD.findall(text)
|
|
|
|
| 46 |
return Counter(words)
|
| 47 |
|
| 48 |
|
|
|
|
|
|
|
| 49 |
def cosineSim(text1, text2):
|
| 50 |
vector1 = text_to_vector(text1)
|
| 51 |
vector2 = text_to_vector(text2)
|
|
|
|
| 54 |
return cosine
|
| 55 |
|
| 56 |
|
| 57 |
+
def get_cosine(vec1, vec2):
|
| 58 |
+
intersection = set(vec1.keys()) & set(vec2.keys())
|
| 59 |
+
numerator = sum([vec1[x] * vec2[x] for x in intersection])
|
| 60 |
+
sum1 = sum([vec1[x] ** 2 for x in vec1.keys()])
|
| 61 |
+
sum2 = sum([vec2[x] ** 2 for x in vec2.keys()])
|
| 62 |
+
denominator = math.sqrt(sum1) * math.sqrt(sum2)
|
| 63 |
+
if denominator == 0:
|
| 64 |
+
return 0.0
|
| 65 |
+
else:
|
| 66 |
+
return float(numerator) / denominator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
def split_sentence_blocks(text):
|
|
|
|
| 78 |
return two_sents
|
| 79 |
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
def build_date(year=2024, month="March", day=1):
|
| 82 |
return f"{year}{months[month]}{day}"
|
| 83 |
|
| 84 |
|
| 85 |
+
def split_ngrams(text, n):
|
| 86 |
+
words = text.split()
|
| 87 |
+
return [words[i : i + n] for i in range(len(words) - n + 1)]
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def sentence_similarity(text1, text2):
|
| 91 |
+
embedding_1 = model.encode(text1, convert_to_tensor=True)
|
| 92 |
+
embedding_2 = model.encode(text2, convert_to_tensor=True)
|
| 93 |
+
o = util.pytorch_cos_sim(embedding_1, embedding_2)
|
| 94 |
+
return o.item()
|
| 95 |
+
|
| 96 |
+
|
| 97 |
async def get_url_data(url, client):
|
| 98 |
try:
|
| 99 |
r = await client.get(url)
|
|
|
|
| 100 |
if r.status_code == 200:
|
|
|
|
| 101 |
soup = BeautifulSoup(r.content, "html.parser")
|
| 102 |
return soup
|
| 103 |
except Exception:
|
| 104 |
return None
|
| 105 |
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
async def parallel_scrap(urls):
|
| 108 |
async with httpx.AsyncClient(timeout=30) as client:
|
| 109 |
tasks = []
|
|
|
|
| 132 |
return scores
|
| 133 |
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
def map_sentence_url(sentences, score_array):
|
| 136 |
sentenceToMaxURL = [-1] * len(sentences)
|
| 137 |
for j in range(len(sentences)):
|
|
|
|
| 152 |
return sentenceToMaxURL
|
| 153 |
|
| 154 |
|
| 155 |
+
def google_search(
|
| 156 |
plag_option,
|
| 157 |
+
sentences,
|
| 158 |
+
url_count,
|
| 159 |
+
score_array,
|
| 160 |
+
url_list,
|
| 161 |
+
sorted_date,
|
|
|
|
|
|
|
| 162 |
domains_to_skip,
|
| 163 |
+
api_key,
|
| 164 |
+
cse_id,
|
| 165 |
+
**kwargs,
|
| 166 |
):
|
| 167 |
+
service = build("customsearch", "v1", developerKey=api_key)
|
| 168 |
+
for i, sentence in enumerate(sentences):
|
| 169 |
+
results = (
|
| 170 |
+
service.cse()
|
| 171 |
+
.list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
|
| 172 |
+
.execute()
|
| 173 |
+
)
|
| 174 |
+
if "items" in results and len(results["items"]) > 0:
|
| 175 |
+
for count, link in enumerate(results["items"]):
|
| 176 |
+
# stop after 3 pages
|
| 177 |
+
if count >= 3:
|
| 178 |
+
break
|
| 179 |
+
# skip user selected domains
|
| 180 |
+
if any(
|
| 181 |
+
("." + domain) in link["link"] for domain in domains_to_skip
|
| 182 |
+
):
|
| 183 |
+
continue
|
| 184 |
+
# clean up snippet of '...'
|
| 185 |
+
snippet = link["snippet"]
|
| 186 |
+
ind = snippet.find("...")
|
| 187 |
+
if ind < 20 and ind > 9:
|
| 188 |
+
snippet = snippet[ind + len("... ") :]
|
| 189 |
+
ind = snippet.find("...")
|
| 190 |
+
if ind > len(snippet) - 5:
|
| 191 |
+
snippet = snippet[:ind]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
+
# update cosine similarity between snippet and given text
|
| 194 |
+
url = link["link"]
|
| 195 |
+
if url not in url_list:
|
| 196 |
+
url_list.append(url)
|
| 197 |
+
score_array.append([0] * len(sentences))
|
| 198 |
+
url_count[url] = url_count[url] + 1 if url in url_count else 1
|
| 199 |
+
if plag_option == "Standard":
|
| 200 |
+
score_array[url_list.index(url)][i] = cosineSim(
|
| 201 |
+
sentence, snippet
|
| 202 |
+
)
|
| 203 |
+
else:
|
| 204 |
+
score_array[url_list.index(url)][i] = sentence_similarity(
|
| 205 |
+
sentence, snippet
|
| 206 |
+
)
|
| 207 |
+
return url_count, score_array
|
| 208 |
|
| 209 |
|
| 210 |
def plagiarism_check(
|
|
|
|
| 218 |
day_to,
|
| 219 |
domains_to_skip,
|
| 220 |
):
|
| 221 |
+
# api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
|
| 222 |
+
# api_key = "AIzaSyCS1WQDMl1IMjaXtwSd_2rA195-Yc4psQE"
|
| 223 |
# api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
|
| 224 |
# api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
|
| 225 |
+
api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
|
| 226 |
cse_id = "851813e81162b4ed4"
|
| 227 |
|
| 228 |
url_scores = []
|
|
|
|
| 296 |
)
|
| 297 |
|
| 298 |
return sentence_scores, url_scores
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def html_highlight(
|
| 302 |
+
plag_option,
|
| 303 |
+
input,
|
| 304 |
+
year_from,
|
| 305 |
+
month_from,
|
| 306 |
+
day_from,
|
| 307 |
+
year_to,
|
| 308 |
+
month_to,
|
| 309 |
+
day_to,
|
| 310 |
+
domains_to_skip,
|
| 311 |
+
):
|
| 312 |
+
sentence_scores, url_scores = plagiarism_check(
|
| 313 |
+
plag_option,
|
| 314 |
+
input,
|
| 315 |
+
year_from,
|
| 316 |
+
month_from,
|
| 317 |
+
day_from,
|
| 318 |
+
year_to,
|
| 319 |
+
month_to,
|
| 320 |
+
day_to,
|
| 321 |
+
domains_to_skip,
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
html_content = "<link href='https://fonts.googleapis.com/css?family=Roboto' rel='stylesheet'>\n<div style='font-family: {font}; border: 2px solid black; background-color: #333333; padding: 10px; color: #FFFFFF;'>"
|
| 325 |
+
prev_idx = None
|
| 326 |
+
combined_sentence = ""
|
| 327 |
+
for sentence, _, _, idx in sentence_scores:
|
| 328 |
+
if idx != prev_idx and prev_idx is not None:
|
| 329 |
+
color = color_map[prev_idx - 1]
|
| 330 |
+
index_part = f'<span style="background-color: {color}; padding: 2px;">[{prev_idx}]</span>'
|
| 331 |
+
formatted_sentence = f"<p>{combined_sentence} {index_part}</p>"
|
| 332 |
+
html_content += formatted_sentence
|
| 333 |
+
combined_sentence = ""
|
| 334 |
+
combined_sentence += " " + sentence
|
| 335 |
+
prev_idx = idx
|
| 336 |
+
|
| 337 |
+
if combined_sentence:
|
| 338 |
+
color = color_map[prev_idx - 1]
|
| 339 |
+
index_part = f'<span style="background-color: {color}; padding: 2px;">[{prev_idx}]</span>'
|
| 340 |
+
formatted_sentence = f"<p>{combined_sentence} {index_part}</p>"
|
| 341 |
+
html_content += formatted_sentence
|
| 342 |
+
|
| 343 |
+
html_content += "<hr>"
|
| 344 |
+
for url, score, idx in url_scores:
|
| 345 |
+
color = color_map[idx - 1]
|
| 346 |
+
formatted_url = f'<p style="background-color: {color}; padding: 5px;">({idx}) <b>{url}</b></p><p> --- Matching Score: {score}%</p>'
|
| 347 |
+
html_content += formatted_url
|
| 348 |
+
|
| 349 |
+
html_content += "</div>"
|
| 350 |
+
|
| 351 |
+
return html_content
|
predictors.py
CHANGED
|
@@ -1,23 +1,11 @@
|
|
| 1 |
-
import requests
|
| 2 |
-
import httpx
|
| 3 |
import torch
|
| 4 |
-
import re
|
| 5 |
-
from bs4 import BeautifulSoup
|
| 6 |
import numpy as np
|
| 7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 8 |
-
import asyncio
|
| 9 |
-
from evaluate import load
|
| 10 |
-
from datetime import date
|
| 11 |
import nltk
|
| 12 |
-
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
|
| 13 |
-
import plotly.graph_objects as go
|
| 14 |
import torch.nn.functional as F
|
| 15 |
import nltk
|
| 16 |
-
from unidecode import unidecode
|
| 17 |
-
import time
|
| 18 |
from scipy.special import softmax
|
| 19 |
import yaml
|
| 20 |
-
import os
|
| 21 |
from utils import *
|
| 22 |
import joblib
|
| 23 |
|
|
@@ -51,9 +39,9 @@ tokenizers_1on1 = {}
|
|
| 51 |
models_1on1 = {}
|
| 52 |
for model_name, model in zip(mc_label_map, text_1on1_models):
|
| 53 |
tokenizers_1on1[model_name] = AutoTokenizer.from_pretrained(model)
|
| 54 |
-
models_1on1[model_name] =
|
| 55 |
-
model
|
| 56 |
-
)
|
| 57 |
|
| 58 |
# proxy models for explainability
|
| 59 |
mini_bc_model_name = "polygraf-ai/bc-model-bert-mini"
|
|
@@ -62,7 +50,9 @@ bc_model_mini = AutoModelForSequenceClassification.from_pretrained(
|
|
| 62 |
mini_bc_model_name
|
| 63 |
).to(device)
|
| 64 |
mini_humanizer_model_name = "polygraf-ai/quillbot-detector-bert-mini-9K"
|
| 65 |
-
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
| 66 |
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(
|
| 67 |
mini_humanizer_model_name
|
| 68 |
).to(device)
|
|
@@ -232,7 +222,9 @@ def predict_mc_scores(input):
|
|
| 232 |
bc_scores = []
|
| 233 |
mc_scores = []
|
| 234 |
|
| 235 |
-
samples_len_bc = len(
|
|
|
|
|
|
|
| 236 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
| 237 |
for i in range(samples_len_bc):
|
| 238 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
@@ -243,7 +235,9 @@ def predict_mc_scores(input):
|
|
| 243 |
bc_score_list = average_bc_scores.tolist()
|
| 244 |
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
|
| 245 |
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
| 246 |
-
samples_len_mc = len(
|
|
|
|
|
|
|
| 247 |
for i in range(samples_len_mc):
|
| 248 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
| 249 |
mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
|
|
@@ -266,7 +260,9 @@ def predict_mc_scores(input):
|
|
| 266 |
|
| 267 |
def predict_bc_scores(input):
|
| 268 |
bc_scores = []
|
| 269 |
-
samples_len_bc = len(
|
|
|
|
|
|
|
| 270 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
| 271 |
for i in range(samples_len_bc):
|
| 272 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
@@ -275,7 +271,9 @@ def predict_bc_scores(input):
|
|
| 275 |
bc_scores_array = np.array(bc_scores)
|
| 276 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
| 277 |
bc_score_list = average_bc_scores.tolist()
|
| 278 |
-
print(
|
|
|
|
|
|
|
| 279 |
# isotonic regression calibration
|
| 280 |
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
| 281 |
human_score = 1 - ai_score
|
|
@@ -309,7 +307,9 @@ def predict_1on1_combined(input):
|
|
| 309 |
|
| 310 |
|
| 311 |
def predict_1on1_single(input, model):
|
| 312 |
-
predictions = predict_1on1(
|
|
|
|
|
|
|
| 313 |
return predictions
|
| 314 |
|
| 315 |
|
|
@@ -321,7 +321,9 @@ def predict_1on1_scores(input, models):
|
|
| 321 |
print(f"Models to Test: {models}")
|
| 322 |
# BC SCORE
|
| 323 |
bc_scores = []
|
| 324 |
-
samples_len_bc = len(
|
|
|
|
|
|
|
| 325 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
| 326 |
for i in range(samples_len_bc):
|
| 327 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
@@ -330,24 +332,30 @@ def predict_1on1_scores(input, models):
|
|
| 330 |
bc_scores_array = np.array(bc_scores)
|
| 331 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
| 332 |
bc_score_list = average_bc_scores.tolist()
|
| 333 |
-
print(
|
|
|
|
|
|
|
| 334 |
# isotonic regression calibration
|
| 335 |
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
| 336 |
human_score = 1 - ai_score
|
| 337 |
bc_score = {"AI": ai_score, "HUMAN": human_score}
|
| 338 |
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
|
| 339 |
-
|
| 340 |
# MC SCORE
|
| 341 |
if len(models) > 1:
|
| 342 |
print("Starting MC")
|
| 343 |
mc_scores = []
|
| 344 |
-
segments_mc = split_text_allow_complete_sentences_nltk(
|
|
|
|
|
|
|
| 345 |
samples_len_mc = len(
|
| 346 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
| 347 |
)
|
| 348 |
for i in range(samples_len_mc):
|
| 349 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
| 350 |
-
mc_score = predict_mc(
|
|
|
|
|
|
|
| 351 |
mc_scores.append(mc_score)
|
| 352 |
mc_scores_array = np.array(mc_scores)
|
| 353 |
average_mc_scores = np.mean(mc_scores_array, axis=0)
|
|
@@ -357,7 +365,9 @@ def predict_1on1_scores(input, models):
|
|
| 357 |
mc_score[label.upper()] = score
|
| 358 |
|
| 359 |
mc_score = {
|
| 360 |
-
key: mc_score[key.upper()]
|
|
|
|
|
|
|
| 361 |
}
|
| 362 |
total = sum(mc_score.values())
|
| 363 |
# Normalize each value by dividing it by the total
|
|
@@ -365,14 +375,16 @@ def predict_1on1_scores(input, models):
|
|
| 365 |
sum_prob = 1 - bc_score["HUMAN"]
|
| 366 |
for key, value in mc_score.items():
|
| 367 |
mc_score[key] = value * sum_prob
|
| 368 |
-
print(
|
| 369 |
if sum_prob < 0.01:
|
| 370 |
mc_score = {}
|
| 371 |
|
| 372 |
elif len(models) == 1:
|
| 373 |
print("Starting 1on1")
|
| 374 |
mc_scores = []
|
| 375 |
-
segments_mc = split_text_allow_complete_sentences_nltk(
|
|
|
|
|
|
|
| 376 |
samples_len_mc = len(
|
| 377 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
| 378 |
)
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
|
|
|
|
|
| 4 |
import nltk
|
|
|
|
|
|
|
| 5 |
import torch.nn.functional as F
|
| 6 |
import nltk
|
|
|
|
|
|
|
| 7 |
from scipy.special import softmax
|
| 8 |
import yaml
|
|
|
|
| 9 |
from utils import *
|
| 10 |
import joblib
|
| 11 |
|
|
|
|
| 39 |
models_1on1 = {}
|
| 40 |
for model_name, model in zip(mc_label_map, text_1on1_models):
|
| 41 |
tokenizers_1on1[model_name] = AutoTokenizer.from_pretrained(model)
|
| 42 |
+
models_1on1[model_name] = (
|
| 43 |
+
AutoModelForSequenceClassification.from_pretrained(model).to(device)
|
| 44 |
+
)
|
| 45 |
|
| 46 |
# proxy models for explainability
|
| 47 |
mini_bc_model_name = "polygraf-ai/bc-model-bert-mini"
|
|
|
|
| 50 |
mini_bc_model_name
|
| 51 |
).to(device)
|
| 52 |
mini_humanizer_model_name = "polygraf-ai/quillbot-detector-bert-mini-9K"
|
| 53 |
+
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(
|
| 54 |
+
mini_humanizer_model_name
|
| 55 |
+
)
|
| 56 |
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(
|
| 57 |
mini_humanizer_model_name
|
| 58 |
).to(device)
|
|
|
|
| 222 |
bc_scores = []
|
| 223 |
mc_scores = []
|
| 224 |
|
| 225 |
+
samples_len_bc = len(
|
| 226 |
+
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
| 227 |
+
)
|
| 228 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
| 229 |
for i in range(samples_len_bc):
|
| 230 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
|
|
| 235 |
bc_score_list = average_bc_scores.tolist()
|
| 236 |
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
|
| 237 |
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
| 238 |
+
samples_len_mc = len(
|
| 239 |
+
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
| 240 |
+
)
|
| 241 |
for i in range(samples_len_mc):
|
| 242 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
| 243 |
mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
|
|
|
|
| 260 |
|
| 261 |
def predict_bc_scores(input):
|
| 262 |
bc_scores = []
|
| 263 |
+
samples_len_bc = len(
|
| 264 |
+
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
| 265 |
+
)
|
| 266 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
| 267 |
for i in range(samples_len_bc):
|
| 268 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
|
|
| 271 |
bc_scores_array = np.array(bc_scores)
|
| 272 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
| 273 |
bc_score_list = average_bc_scores.tolist()
|
| 274 |
+
print(
|
| 275 |
+
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
|
| 276 |
+
)
|
| 277 |
# isotonic regression calibration
|
| 278 |
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
| 279 |
human_score = 1 - ai_score
|
|
|
|
| 307 |
|
| 308 |
|
| 309 |
def predict_1on1_single(input, model):
|
| 310 |
+
predictions = predict_1on1(
|
| 311 |
+
models_1on1[model], tokenizers_1on1[model], input
|
| 312 |
+
)[1]
|
| 313 |
return predictions
|
| 314 |
|
| 315 |
|
|
|
|
| 321 |
print(f"Models to Test: {models}")
|
| 322 |
# BC SCORE
|
| 323 |
bc_scores = []
|
| 324 |
+
samples_len_bc = len(
|
| 325 |
+
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
| 326 |
+
)
|
| 327 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
| 328 |
for i in range(samples_len_bc):
|
| 329 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
|
|
| 332 |
bc_scores_array = np.array(bc_scores)
|
| 333 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
| 334 |
bc_score_list = average_bc_scores.tolist()
|
| 335 |
+
print(
|
| 336 |
+
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
|
| 337 |
+
)
|
| 338 |
# isotonic regression calibration
|
| 339 |
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
| 340 |
human_score = 1 - ai_score
|
| 341 |
bc_score = {"AI": ai_score, "HUMAN": human_score}
|
| 342 |
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
|
| 343 |
+
|
| 344 |
# MC SCORE
|
| 345 |
if len(models) > 1:
|
| 346 |
print("Starting MC")
|
| 347 |
mc_scores = []
|
| 348 |
+
segments_mc = split_text_allow_complete_sentences_nltk(
|
| 349 |
+
input, type_det="mc"
|
| 350 |
+
)
|
| 351 |
samples_len_mc = len(
|
| 352 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
| 353 |
)
|
| 354 |
for i in range(samples_len_mc):
|
| 355 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
| 356 |
+
mc_score = predict_mc(
|
| 357 |
+
text_mc_model, text_mc_tokenizer, cleaned_text_mc
|
| 358 |
+
)
|
| 359 |
mc_scores.append(mc_score)
|
| 360 |
mc_scores_array = np.array(mc_scores)
|
| 361 |
average_mc_scores = np.mean(mc_scores_array, axis=0)
|
|
|
|
| 365 |
mc_score[label.upper()] = score
|
| 366 |
|
| 367 |
mc_score = {
|
| 368 |
+
key: mc_score[key.upper()]
|
| 369 |
+
for key in models
|
| 370 |
+
if key.upper() in mc_score
|
| 371 |
}
|
| 372 |
total = sum(mc_score.values())
|
| 373 |
# Normalize each value by dividing it by the total
|
|
|
|
| 375 |
sum_prob = 1 - bc_score["HUMAN"]
|
| 376 |
for key, value in mc_score.items():
|
| 377 |
mc_score[key] = value * sum_prob
|
| 378 |
+
print("MC Score:", mc_score)
|
| 379 |
if sum_prob < 0.01:
|
| 380 |
mc_score = {}
|
| 381 |
|
| 382 |
elif len(models) == 1:
|
| 383 |
print("Starting 1on1")
|
| 384 |
mc_scores = []
|
| 385 |
+
segments_mc = split_text_allow_complete_sentences_nltk(
|
| 386 |
+
input, type_det="mc"
|
| 387 |
+
)
|
| 388 |
samples_len_mc = len(
|
| 389 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
| 390 |
)
|
utils.py
CHANGED
|
@@ -1,28 +1,11 @@
|
|
| 1 |
-
from urllib.request import urlopen, Request
|
| 2 |
-
from googleapiclient.discovery import build
|
| 3 |
-
import requests
|
| 4 |
-
import httpx
|
| 5 |
import re
|
| 6 |
-
|
| 7 |
-
import re, math
|
| 8 |
-
from collections import Counter
|
| 9 |
-
import numpy as np
|
| 10 |
-
import asyncio
|
| 11 |
-
import nltk
|
| 12 |
from sentence_transformers import SentenceTransformer, util
|
| 13 |
-
import threading
|
| 14 |
-
import torch
|
| 15 |
import re
|
| 16 |
-
import numpy as np
|
| 17 |
-
import asyncio
|
| 18 |
-
from datetime import date
|
| 19 |
-
import nltk
|
| 20 |
from unidecode import unidecode
|
| 21 |
-
from scipy.special import softmax
|
| 22 |
from transformers import AutoTokenizer
|
| 23 |
import yaml
|
| 24 |
import fitz
|
| 25 |
-
import os
|
| 26 |
|
| 27 |
|
| 28 |
def remove_accents(input_str):
|
|
@@ -48,9 +31,6 @@ def update_character_count(text):
|
|
| 48 |
return f"{len(text)} characters"
|
| 49 |
|
| 50 |
|
| 51 |
-
nltk.download("punkt")
|
| 52 |
-
|
| 53 |
-
|
| 54 |
with open("config.yaml", "r") as file:
|
| 55 |
params = yaml.safe_load(file)
|
| 56 |
|
|
@@ -77,4 +57,4 @@ def extract_text_from_pdf(pdf_path):
|
|
| 77 |
|
| 78 |
|
| 79 |
WORD = re.compile(r"\w+")
|
| 80 |
-
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import re
|
| 2 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
|
|
| 4 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from unidecode import unidecode
|
|
|
|
| 6 |
from transformers import AutoTokenizer
|
| 7 |
import yaml
|
| 8 |
import fitz
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
def remove_accents(input_str):
|
|
|
|
| 31 |
return f"{len(text)} characters"
|
| 32 |
|
| 33 |
|
|
|
|
|
|
|
|
|
|
| 34 |
with open("config.yaml", "r") as file:
|
| 35 |
params = yaml.safe_load(file)
|
| 36 |
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
WORD = re.compile(r"\w+")
|
| 60 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|