Spaces:
Running
Running
refactored plagiarism
Browse files- plagiarism.py +149 -184
- predictors.py +41 -29
- utils.py +2 -22
plagiarism.py
CHANGED
@@ -16,37 +16,36 @@ WORD = re.compile(r"\w+")
|
|
16 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
17 |
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
-
# converts given text into a vector
|
41 |
def text_to_vector(text):
|
42 |
-
# uses the Regular expression above and gets all words
|
43 |
words = WORD.findall(text)
|
44 |
-
# returns a counter of all the words (count of number of occurences)
|
45 |
return Counter(words)
|
46 |
|
47 |
|
48 |
-
# returns cosine similarity of two words
|
49 |
-
# uses: text_to_vector(text) and get_cosine(v1,v2)
|
50 |
def cosineSim(text1, text2):
|
51 |
vector1 = text_to_vector(text1)
|
52 |
vector2 = text_to_vector(text2)
|
@@ -55,75 +54,16 @@ def cosineSim(text1, text2):
|
|
55 |
return cosine
|
56 |
|
57 |
|
58 |
-
def
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
embedding_2 = model.encode(text2, convert_to_tensor=True)
|
69 |
-
|
70 |
-
o = util.pytorch_cos_sim(embedding_1, embedding_2)
|
71 |
-
return o.item()
|
72 |
-
|
73 |
-
|
74 |
-
def google_search(
|
75 |
-
plag_option,
|
76 |
-
sentences,
|
77 |
-
url_count,
|
78 |
-
score_array,
|
79 |
-
url_list,
|
80 |
-
sorted_date,
|
81 |
-
domains_to_skip,
|
82 |
-
api_key,
|
83 |
-
cse_id,
|
84 |
-
**kwargs,
|
85 |
-
):
|
86 |
-
service = build("customsearch", "v1", developerKey=api_key)
|
87 |
-
for i, sentence in enumerate(sentences):
|
88 |
-
results = (
|
89 |
-
service.cse()
|
90 |
-
.list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
|
91 |
-
.execute()
|
92 |
-
)
|
93 |
-
if "items" in results and len(results["items"]) > 0:
|
94 |
-
for count, link in enumerate(results["items"]):
|
95 |
-
# stop after 3 pages
|
96 |
-
if count >= 3:
|
97 |
-
break
|
98 |
-
# skip user selected domains
|
99 |
-
if any(
|
100 |
-
("." + domain) in link["link"] for domain in domains_to_skip
|
101 |
-
):
|
102 |
-
continue
|
103 |
-
# clean up snippet of '...'
|
104 |
-
snippet = link["snippet"]
|
105 |
-
ind = snippet.find("...")
|
106 |
-
if ind < 20 and ind > 9:
|
107 |
-
snippet = snippet[ind + len("... ") :]
|
108 |
-
ind = snippet.find("...")
|
109 |
-
if ind > len(snippet) - 5:
|
110 |
-
snippet = snippet[:ind]
|
111 |
-
|
112 |
-
# update cosine similarity between snippet and given text
|
113 |
-
url = link["link"]
|
114 |
-
if url not in url_list:
|
115 |
-
url_list.append(url)
|
116 |
-
score_array.append([0] * len(sentences))
|
117 |
-
url_count[url] = url_count[url] + 1 if url in url_count else 1
|
118 |
-
if plag_option == "Standard":
|
119 |
-
score_array[url_list.index(url)][i] = cosineSim(
|
120 |
-
sentence, snippet
|
121 |
-
)
|
122 |
-
else:
|
123 |
-
score_array[url_list.index(url)][i] = sentence_similarity(
|
124 |
-
sentence, snippet
|
125 |
-
)
|
126 |
-
return url_count, score_array
|
127 |
|
128 |
|
129 |
def split_sentence_blocks(text):
|
@@ -138,49 +78,32 @@ def split_sentence_blocks(text):
|
|
138 |
return two_sents
|
139 |
|
140 |
|
141 |
-
months = {
|
142 |
-
"January": "01",
|
143 |
-
"February": "02",
|
144 |
-
"March": "03",
|
145 |
-
"April": "04",
|
146 |
-
"May": "05",
|
147 |
-
"June": "06",
|
148 |
-
"July": "07",
|
149 |
-
"August": "08",
|
150 |
-
"September": "09",
|
151 |
-
"October": "10",
|
152 |
-
"November": "11",
|
153 |
-
"December": "12",
|
154 |
-
}
|
155 |
-
|
156 |
-
|
157 |
def build_date(year=2024, month="March", day=1):
|
158 |
return f"{year}{months[month]}{day}"
|
159 |
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
async def get_url_data(url, client):
|
162 |
try:
|
163 |
r = await client.get(url)
|
164 |
-
# print(r.status_code)
|
165 |
if r.status_code == 200:
|
166 |
-
# print("in")
|
167 |
soup = BeautifulSoup(r.content, "html.parser")
|
168 |
return soup
|
169 |
except Exception:
|
170 |
return None
|
171 |
|
172 |
|
173 |
-
def remove_punc(text):
|
174 |
-
res = re.sub(r"[^\w\s]", "", text)
|
175 |
-
return res
|
176 |
-
|
177 |
-
|
178 |
-
def split_ngrams(text, n):
|
179 |
-
# return n-grams of size n
|
180 |
-
words = text.split()
|
181 |
-
return [words[i : i + n] for i in range(len(words) - n + 1)]
|
182 |
-
|
183 |
-
|
184 |
async def parallel_scrap(urls):
|
185 |
async with httpx.AsyncClient(timeout=30) as client:
|
186 |
tasks = []
|
@@ -209,11 +132,6 @@ def process_with_multiprocessing(input_data):
|
|
209 |
return scores
|
210 |
|
211 |
|
212 |
-
def print2d(array):
|
213 |
-
for row in array:
|
214 |
-
print(row)
|
215 |
-
|
216 |
-
|
217 |
def map_sentence_url(sentences, score_array):
|
218 |
sentenceToMaxURL = [-1] * len(sentences)
|
219 |
for j in range(len(sentences)):
|
@@ -234,65 +152,59 @@ def map_sentence_url(sentences, score_array):
|
|
234 |
return sentenceToMaxURL
|
235 |
|
236 |
|
237 |
-
def
|
238 |
plag_option,
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
month_to,
|
245 |
-
day_to,
|
246 |
domains_to_skip,
|
|
|
|
|
|
|
247 |
):
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
color = color_map[prev_idx - 1]
|
274 |
-
index_part = f'<span style="background-color: {color}; padding: 2px;">[{prev_idx}]</span>'
|
275 |
-
formatted_sentence = f"<p>{combined_sentence} {index_part}</p>"
|
276 |
-
html_content += formatted_sentence
|
277 |
-
combined_sentence = ""
|
278 |
-
combined_sentence += " " + sentence
|
279 |
-
prev_idx = idx
|
280 |
-
|
281 |
-
if combined_sentence:
|
282 |
-
color = color_map[prev_idx - 1]
|
283 |
-
index_part = f'<span style="background-color: {color}; padding: 2px;">[{prev_idx}]</span>'
|
284 |
-
formatted_sentence = f"<p>{combined_sentence} {index_part}</p>"
|
285 |
-
html_content += formatted_sentence
|
286 |
-
|
287 |
-
html_content += "<hr>"
|
288 |
-
for url, score, idx in url_scores:
|
289 |
-
color = color_map[idx - 1]
|
290 |
-
formatted_url = f'<p style="background-color: {color}; padding: 5px;">({idx}) <b>{url}</b></p><p> --- Matching Score: {score}%</p>'
|
291 |
-
html_content += formatted_url
|
292 |
-
|
293 |
-
html_content += "</div>"
|
294 |
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
|
298 |
def plagiarism_check(
|
@@ -306,11 +218,11 @@ def plagiarism_check(
|
|
306 |
day_to,
|
307 |
domains_to_skip,
|
308 |
):
|
309 |
-
api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
|
310 |
-
api_key = "AIzaSyCS1WQDMl1IMjaXtwSd_2rA195-Yc4psQE"
|
311 |
# api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
|
312 |
# api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
|
313 |
-
|
314 |
cse_id = "851813e81162b4ed4"
|
315 |
|
316 |
url_scores = []
|
@@ -384,3 +296,56 @@ def plagiarism_check(
|
|
384 |
)
|
385 |
|
386 |
return sentence_scores, url_scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
17 |
|
18 |
|
19 |
+
months = {
|
20 |
+
"January": "01",
|
21 |
+
"February": "02",
|
22 |
+
"March": "03",
|
23 |
+
"April": "04",
|
24 |
+
"May": "05",
|
25 |
+
"June": "06",
|
26 |
+
"July": "07",
|
27 |
+
"August": "08",
|
28 |
+
"September": "09",
|
29 |
+
"October": "10",
|
30 |
+
"November": "11",
|
31 |
+
"December": "12",
|
32 |
+
}
|
33 |
|
34 |
+
color_map = [
|
35 |
+
"#cf2323",
|
36 |
+
"#eb9d59",
|
37 |
+
"#c2ad36",
|
38 |
+
"#e1ed72",
|
39 |
+
"#c2db76",
|
40 |
+
"#a2db76",
|
41 |
+
]
|
42 |
|
43 |
|
|
|
44 |
def text_to_vector(text):
|
|
|
45 |
words = WORD.findall(text)
|
|
|
46 |
return Counter(words)
|
47 |
|
48 |
|
|
|
|
|
49 |
def cosineSim(text1, text2):
|
50 |
vector1 = text_to_vector(text1)
|
51 |
vector2 = text_to_vector(text2)
|
|
|
54 |
return cosine
|
55 |
|
56 |
|
57 |
+
def get_cosine(vec1, vec2):
|
58 |
+
intersection = set(vec1.keys()) & set(vec2.keys())
|
59 |
+
numerator = sum([vec1[x] * vec2[x] for x in intersection])
|
60 |
+
sum1 = sum([vec1[x] ** 2 for x in vec1.keys()])
|
61 |
+
sum2 = sum([vec2[x] ** 2 for x in vec2.keys()])
|
62 |
+
denominator = math.sqrt(sum1) * math.sqrt(sum2)
|
63 |
+
if denominator == 0:
|
64 |
+
return 0.0
|
65 |
+
else:
|
66 |
+
return float(numerator) / denominator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
def split_sentence_blocks(text):
|
|
|
78 |
return two_sents
|
79 |
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
def build_date(year=2024, month="March", day=1):
|
82 |
return f"{year}{months[month]}{day}"
|
83 |
|
84 |
|
85 |
+
def split_ngrams(text, n):
|
86 |
+
words = text.split()
|
87 |
+
return [words[i : i + n] for i in range(len(words) - n + 1)]
|
88 |
+
|
89 |
+
|
90 |
+
def sentence_similarity(text1, text2):
|
91 |
+
embedding_1 = model.encode(text1, convert_to_tensor=True)
|
92 |
+
embedding_2 = model.encode(text2, convert_to_tensor=True)
|
93 |
+
o = util.pytorch_cos_sim(embedding_1, embedding_2)
|
94 |
+
return o.item()
|
95 |
+
|
96 |
+
|
97 |
async def get_url_data(url, client):
|
98 |
try:
|
99 |
r = await client.get(url)
|
|
|
100 |
if r.status_code == 200:
|
|
|
101 |
soup = BeautifulSoup(r.content, "html.parser")
|
102 |
return soup
|
103 |
except Exception:
|
104 |
return None
|
105 |
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
async def parallel_scrap(urls):
|
108 |
async with httpx.AsyncClient(timeout=30) as client:
|
109 |
tasks = []
|
|
|
132 |
return scores
|
133 |
|
134 |
|
|
|
|
|
|
|
|
|
|
|
135 |
def map_sentence_url(sentences, score_array):
|
136 |
sentenceToMaxURL = [-1] * len(sentences)
|
137 |
for j in range(len(sentences)):
|
|
|
152 |
return sentenceToMaxURL
|
153 |
|
154 |
|
155 |
+
def google_search(
|
156 |
plag_option,
|
157 |
+
sentences,
|
158 |
+
url_count,
|
159 |
+
score_array,
|
160 |
+
url_list,
|
161 |
+
sorted_date,
|
|
|
|
|
162 |
domains_to_skip,
|
163 |
+
api_key,
|
164 |
+
cse_id,
|
165 |
+
**kwargs,
|
166 |
):
|
167 |
+
service = build("customsearch", "v1", developerKey=api_key)
|
168 |
+
for i, sentence in enumerate(sentences):
|
169 |
+
results = (
|
170 |
+
service.cse()
|
171 |
+
.list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
|
172 |
+
.execute()
|
173 |
+
)
|
174 |
+
if "items" in results and len(results["items"]) > 0:
|
175 |
+
for count, link in enumerate(results["items"]):
|
176 |
+
# stop after 3 pages
|
177 |
+
if count >= 3:
|
178 |
+
break
|
179 |
+
# skip user selected domains
|
180 |
+
if any(
|
181 |
+
("." + domain) in link["link"] for domain in domains_to_skip
|
182 |
+
):
|
183 |
+
continue
|
184 |
+
# clean up snippet of '...'
|
185 |
+
snippet = link["snippet"]
|
186 |
+
ind = snippet.find("...")
|
187 |
+
if ind < 20 and ind > 9:
|
188 |
+
snippet = snippet[ind + len("... ") :]
|
189 |
+
ind = snippet.find("...")
|
190 |
+
if ind > len(snippet) - 5:
|
191 |
+
snippet = snippet[:ind]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
# update cosine similarity between snippet and given text
|
194 |
+
url = link["link"]
|
195 |
+
if url not in url_list:
|
196 |
+
url_list.append(url)
|
197 |
+
score_array.append([0] * len(sentences))
|
198 |
+
url_count[url] = url_count[url] + 1 if url in url_count else 1
|
199 |
+
if plag_option == "Standard":
|
200 |
+
score_array[url_list.index(url)][i] = cosineSim(
|
201 |
+
sentence, snippet
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
score_array[url_list.index(url)][i] = sentence_similarity(
|
205 |
+
sentence, snippet
|
206 |
+
)
|
207 |
+
return url_count, score_array
|
208 |
|
209 |
|
210 |
def plagiarism_check(
|
|
|
218 |
day_to,
|
219 |
domains_to_skip,
|
220 |
):
|
221 |
+
# api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
|
222 |
+
# api_key = "AIzaSyCS1WQDMl1IMjaXtwSd_2rA195-Yc4psQE"
|
223 |
# api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
|
224 |
# api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
|
225 |
+
api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
|
226 |
cse_id = "851813e81162b4ed4"
|
227 |
|
228 |
url_scores = []
|
|
|
296 |
)
|
297 |
|
298 |
return sentence_scores, url_scores
|
299 |
+
|
300 |
+
|
301 |
+
def html_highlight(
|
302 |
+
plag_option,
|
303 |
+
input,
|
304 |
+
year_from,
|
305 |
+
month_from,
|
306 |
+
day_from,
|
307 |
+
year_to,
|
308 |
+
month_to,
|
309 |
+
day_to,
|
310 |
+
domains_to_skip,
|
311 |
+
):
|
312 |
+
sentence_scores, url_scores = plagiarism_check(
|
313 |
+
plag_option,
|
314 |
+
input,
|
315 |
+
year_from,
|
316 |
+
month_from,
|
317 |
+
day_from,
|
318 |
+
year_to,
|
319 |
+
month_to,
|
320 |
+
day_to,
|
321 |
+
domains_to_skip,
|
322 |
+
)
|
323 |
+
|
324 |
+
html_content = "<link href='https://fonts.googleapis.com/css?family=Roboto' rel='stylesheet'>\n<div style='font-family: {font}; border: 2px solid black; background-color: #333333; padding: 10px; color: #FFFFFF;'>"
|
325 |
+
prev_idx = None
|
326 |
+
combined_sentence = ""
|
327 |
+
for sentence, _, _, idx in sentence_scores:
|
328 |
+
if idx != prev_idx and prev_idx is not None:
|
329 |
+
color = color_map[prev_idx - 1]
|
330 |
+
index_part = f'<span style="background-color: {color}; padding: 2px;">[{prev_idx}]</span>'
|
331 |
+
formatted_sentence = f"<p>{combined_sentence} {index_part}</p>"
|
332 |
+
html_content += formatted_sentence
|
333 |
+
combined_sentence = ""
|
334 |
+
combined_sentence += " " + sentence
|
335 |
+
prev_idx = idx
|
336 |
+
|
337 |
+
if combined_sentence:
|
338 |
+
color = color_map[prev_idx - 1]
|
339 |
+
index_part = f'<span style="background-color: {color}; padding: 2px;">[{prev_idx}]</span>'
|
340 |
+
formatted_sentence = f"<p>{combined_sentence} {index_part}</p>"
|
341 |
+
html_content += formatted_sentence
|
342 |
+
|
343 |
+
html_content += "<hr>"
|
344 |
+
for url, score, idx in url_scores:
|
345 |
+
color = color_map[idx - 1]
|
346 |
+
formatted_url = f'<p style="background-color: {color}; padding: 5px;">({idx}) <b>{url}</b></p><p> --- Matching Score: {score}%</p>'
|
347 |
+
html_content += formatted_url
|
348 |
+
|
349 |
+
html_content += "</div>"
|
350 |
+
|
351 |
+
return html_content
|
predictors.py
CHANGED
@@ -1,23 +1,11 @@
|
|
1 |
-
import requests
|
2 |
-
import httpx
|
3 |
import torch
|
4 |
-
import re
|
5 |
-
from bs4 import BeautifulSoup
|
6 |
import numpy as np
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
-
import asyncio
|
9 |
-
from evaluate import load
|
10 |
-
from datetime import date
|
11 |
import nltk
|
12 |
-
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
|
13 |
-
import plotly.graph_objects as go
|
14 |
import torch.nn.functional as F
|
15 |
import nltk
|
16 |
-
from unidecode import unidecode
|
17 |
-
import time
|
18 |
from scipy.special import softmax
|
19 |
import yaml
|
20 |
-
import os
|
21 |
from utils import *
|
22 |
import joblib
|
23 |
|
@@ -51,9 +39,9 @@ tokenizers_1on1 = {}
|
|
51 |
models_1on1 = {}
|
52 |
for model_name, model in zip(mc_label_map, text_1on1_models):
|
53 |
tokenizers_1on1[model_name] = AutoTokenizer.from_pretrained(model)
|
54 |
-
models_1on1[model_name] =
|
55 |
-
model
|
56 |
-
)
|
57 |
|
58 |
# proxy models for explainability
|
59 |
mini_bc_model_name = "polygraf-ai/bc-model-bert-mini"
|
@@ -62,7 +50,9 @@ bc_model_mini = AutoModelForSequenceClassification.from_pretrained(
|
|
62 |
mini_bc_model_name
|
63 |
).to(device)
|
64 |
mini_humanizer_model_name = "polygraf-ai/quillbot-detector-bert-mini-9K"
|
65 |
-
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(
|
|
|
|
|
66 |
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(
|
67 |
mini_humanizer_model_name
|
68 |
).to(device)
|
@@ -232,7 +222,9 @@ def predict_mc_scores(input):
|
|
232 |
bc_scores = []
|
233 |
mc_scores = []
|
234 |
|
235 |
-
samples_len_bc = len(
|
|
|
|
|
236 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
237 |
for i in range(samples_len_bc):
|
238 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
@@ -243,7 +235,9 @@ def predict_mc_scores(input):
|
|
243 |
bc_score_list = average_bc_scores.tolist()
|
244 |
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
|
245 |
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
246 |
-
samples_len_mc = len(
|
|
|
|
|
247 |
for i in range(samples_len_mc):
|
248 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
249 |
mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
|
@@ -266,7 +260,9 @@ def predict_mc_scores(input):
|
|
266 |
|
267 |
def predict_bc_scores(input):
|
268 |
bc_scores = []
|
269 |
-
samples_len_bc = len(
|
|
|
|
|
270 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
271 |
for i in range(samples_len_bc):
|
272 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
@@ -275,7 +271,9 @@ def predict_bc_scores(input):
|
|
275 |
bc_scores_array = np.array(bc_scores)
|
276 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
277 |
bc_score_list = average_bc_scores.tolist()
|
278 |
-
print(
|
|
|
|
|
279 |
# isotonic regression calibration
|
280 |
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
281 |
human_score = 1 - ai_score
|
@@ -309,7 +307,9 @@ def predict_1on1_combined(input):
|
|
309 |
|
310 |
|
311 |
def predict_1on1_single(input, model):
|
312 |
-
predictions = predict_1on1(
|
|
|
|
|
313 |
return predictions
|
314 |
|
315 |
|
@@ -321,7 +321,9 @@ def predict_1on1_scores(input, models):
|
|
321 |
print(f"Models to Test: {models}")
|
322 |
# BC SCORE
|
323 |
bc_scores = []
|
324 |
-
samples_len_bc = len(
|
|
|
|
|
325 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
326 |
for i in range(samples_len_bc):
|
327 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
@@ -330,24 +332,30 @@ def predict_1on1_scores(input, models):
|
|
330 |
bc_scores_array = np.array(bc_scores)
|
331 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
332 |
bc_score_list = average_bc_scores.tolist()
|
333 |
-
print(
|
|
|
|
|
334 |
# isotonic regression calibration
|
335 |
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
336 |
human_score = 1 - ai_score
|
337 |
bc_score = {"AI": ai_score, "HUMAN": human_score}
|
338 |
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
|
339 |
-
|
340 |
# MC SCORE
|
341 |
if len(models) > 1:
|
342 |
print("Starting MC")
|
343 |
mc_scores = []
|
344 |
-
segments_mc = split_text_allow_complete_sentences_nltk(
|
|
|
|
|
345 |
samples_len_mc = len(
|
346 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
347 |
)
|
348 |
for i in range(samples_len_mc):
|
349 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
350 |
-
mc_score = predict_mc(
|
|
|
|
|
351 |
mc_scores.append(mc_score)
|
352 |
mc_scores_array = np.array(mc_scores)
|
353 |
average_mc_scores = np.mean(mc_scores_array, axis=0)
|
@@ -357,7 +365,9 @@ def predict_1on1_scores(input, models):
|
|
357 |
mc_score[label.upper()] = score
|
358 |
|
359 |
mc_score = {
|
360 |
-
key: mc_score[key.upper()]
|
|
|
|
|
361 |
}
|
362 |
total = sum(mc_score.values())
|
363 |
# Normalize each value by dividing it by the total
|
@@ -365,14 +375,16 @@ def predict_1on1_scores(input, models):
|
|
365 |
sum_prob = 1 - bc_score["HUMAN"]
|
366 |
for key, value in mc_score.items():
|
367 |
mc_score[key] = value * sum_prob
|
368 |
-
print(
|
369 |
if sum_prob < 0.01:
|
370 |
mc_score = {}
|
371 |
|
372 |
elif len(models) == 1:
|
373 |
print("Starting 1on1")
|
374 |
mc_scores = []
|
375 |
-
segments_mc = split_text_allow_complete_sentences_nltk(
|
|
|
|
|
376 |
samples_len_mc = len(
|
377 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
378 |
)
|
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
import numpy as np
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
|
|
4 |
import nltk
|
|
|
|
|
5 |
import torch.nn.functional as F
|
6 |
import nltk
|
|
|
|
|
7 |
from scipy.special import softmax
|
8 |
import yaml
|
|
|
9 |
from utils import *
|
10 |
import joblib
|
11 |
|
|
|
39 |
models_1on1 = {}
|
40 |
for model_name, model in zip(mc_label_map, text_1on1_models):
|
41 |
tokenizers_1on1[model_name] = AutoTokenizer.from_pretrained(model)
|
42 |
+
models_1on1[model_name] = (
|
43 |
+
AutoModelForSequenceClassification.from_pretrained(model).to(device)
|
44 |
+
)
|
45 |
|
46 |
# proxy models for explainability
|
47 |
mini_bc_model_name = "polygraf-ai/bc-model-bert-mini"
|
|
|
50 |
mini_bc_model_name
|
51 |
).to(device)
|
52 |
mini_humanizer_model_name = "polygraf-ai/quillbot-detector-bert-mini-9K"
|
53 |
+
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(
|
54 |
+
mini_humanizer_model_name
|
55 |
+
)
|
56 |
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(
|
57 |
mini_humanizer_model_name
|
58 |
).to(device)
|
|
|
222 |
bc_scores = []
|
223 |
mc_scores = []
|
224 |
|
225 |
+
samples_len_bc = len(
|
226 |
+
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
227 |
+
)
|
228 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
229 |
for i in range(samples_len_bc):
|
230 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
|
235 |
bc_score_list = average_bc_scores.tolist()
|
236 |
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
|
237 |
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
238 |
+
samples_len_mc = len(
|
239 |
+
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
240 |
+
)
|
241 |
for i in range(samples_len_mc):
|
242 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
243 |
mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
|
|
|
260 |
|
261 |
def predict_bc_scores(input):
|
262 |
bc_scores = []
|
263 |
+
samples_len_bc = len(
|
264 |
+
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
265 |
+
)
|
266 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
267 |
for i in range(samples_len_bc):
|
268 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
|
271 |
bc_scores_array = np.array(bc_scores)
|
272 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
273 |
bc_score_list = average_bc_scores.tolist()
|
274 |
+
print(
|
275 |
+
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
|
276 |
+
)
|
277 |
# isotonic regression calibration
|
278 |
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
279 |
human_score = 1 - ai_score
|
|
|
307 |
|
308 |
|
309 |
def predict_1on1_single(input, model):
|
310 |
+
predictions = predict_1on1(
|
311 |
+
models_1on1[model], tokenizers_1on1[model], input
|
312 |
+
)[1]
|
313 |
return predictions
|
314 |
|
315 |
|
|
|
321 |
print(f"Models to Test: {models}")
|
322 |
# BC SCORE
|
323 |
bc_scores = []
|
324 |
+
samples_len_bc = len(
|
325 |
+
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
326 |
+
)
|
327 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
328 |
for i in range(samples_len_bc):
|
329 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
|
332 |
bc_scores_array = np.array(bc_scores)
|
333 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
334 |
bc_score_list = average_bc_scores.tolist()
|
335 |
+
print(
|
336 |
+
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
|
337 |
+
)
|
338 |
# isotonic regression calibration
|
339 |
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
340 |
human_score = 1 - ai_score
|
341 |
bc_score = {"AI": ai_score, "HUMAN": human_score}
|
342 |
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
|
343 |
+
|
344 |
# MC SCORE
|
345 |
if len(models) > 1:
|
346 |
print("Starting MC")
|
347 |
mc_scores = []
|
348 |
+
segments_mc = split_text_allow_complete_sentences_nltk(
|
349 |
+
input, type_det="mc"
|
350 |
+
)
|
351 |
samples_len_mc = len(
|
352 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
353 |
)
|
354 |
for i in range(samples_len_mc):
|
355 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
356 |
+
mc_score = predict_mc(
|
357 |
+
text_mc_model, text_mc_tokenizer, cleaned_text_mc
|
358 |
+
)
|
359 |
mc_scores.append(mc_score)
|
360 |
mc_scores_array = np.array(mc_scores)
|
361 |
average_mc_scores = np.mean(mc_scores_array, axis=0)
|
|
|
365 |
mc_score[label.upper()] = score
|
366 |
|
367 |
mc_score = {
|
368 |
+
key: mc_score[key.upper()]
|
369 |
+
for key in models
|
370 |
+
if key.upper() in mc_score
|
371 |
}
|
372 |
total = sum(mc_score.values())
|
373 |
# Normalize each value by dividing it by the total
|
|
|
375 |
sum_prob = 1 - bc_score["HUMAN"]
|
376 |
for key, value in mc_score.items():
|
377 |
mc_score[key] = value * sum_prob
|
378 |
+
print("MC Score:", mc_score)
|
379 |
if sum_prob < 0.01:
|
380 |
mc_score = {}
|
381 |
|
382 |
elif len(models) == 1:
|
383 |
print("Starting 1on1")
|
384 |
mc_scores = []
|
385 |
+
segments_mc = split_text_allow_complete_sentences_nltk(
|
386 |
+
input, type_det="mc"
|
387 |
+
)
|
388 |
samples_len_mc = len(
|
389 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
390 |
)
|
utils.py
CHANGED
@@ -1,28 +1,11 @@
|
|
1 |
-
from urllib.request import urlopen, Request
|
2 |
-
from googleapiclient.discovery import build
|
3 |
-
import requests
|
4 |
-
import httpx
|
5 |
import re
|
6 |
-
|
7 |
-
import re, math
|
8 |
-
from collections import Counter
|
9 |
-
import numpy as np
|
10 |
-
import asyncio
|
11 |
-
import nltk
|
12 |
from sentence_transformers import SentenceTransformer, util
|
13 |
-
import threading
|
14 |
-
import torch
|
15 |
import re
|
16 |
-
import numpy as np
|
17 |
-
import asyncio
|
18 |
-
from datetime import date
|
19 |
-
import nltk
|
20 |
from unidecode import unidecode
|
21 |
-
from scipy.special import softmax
|
22 |
from transformers import AutoTokenizer
|
23 |
import yaml
|
24 |
import fitz
|
25 |
-
import os
|
26 |
|
27 |
|
28 |
def remove_accents(input_str):
|
@@ -48,9 +31,6 @@ def update_character_count(text):
|
|
48 |
return f"{len(text)} characters"
|
49 |
|
50 |
|
51 |
-
nltk.download("punkt")
|
52 |
-
|
53 |
-
|
54 |
with open("config.yaml", "r") as file:
|
55 |
params = yaml.safe_load(file)
|
56 |
|
@@ -77,4 +57,4 @@ def extract_text_from_pdf(pdf_path):
|
|
77 |
|
78 |
|
79 |
WORD = re.compile(r"\w+")
|
80 |
-
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
2 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
3 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
4 |
import re
|
|
|
|
|
|
|
|
|
5 |
from unidecode import unidecode
|
|
|
6 |
from transformers import AutoTokenizer
|
7 |
import yaml
|
8 |
import fitz
|
|
|
9 |
|
10 |
|
11 |
def remove_accents(input_str):
|
|
|
31 |
return f"{len(text)} characters"
|
32 |
|
33 |
|
|
|
|
|
|
|
34 |
with open("config.yaml", "r") as file:
|
35 |
params = yaml.safe_load(file)
|
36 |
|
|
|
57 |
|
58 |
|
59 |
WORD = re.compile(r"\w+")
|
60 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|