minko186 commited on
Commit
75fa89d
1 Parent(s): 8a482d3

Update predictors.py

Browse files
Files changed (1) hide show
  1. predictors.py +15 -14
predictors.py CHANGED
@@ -60,16 +60,16 @@ text_bc_model = BetterTransformer.transform(text_bc_model)
60
  text_mc_model = BetterTransformer.transform(text_mc_model)
61
  quillbot_model = BetterTransformer.transform(quillbot_model)
62
 
63
- bias_model_checker = AutoModelForSequenceClassification.from_pretrained(bias_checker_model_name)
64
- tokenizer = AutoTokenizer.from_pretrained(bias_checker_model_name)
65
- bias_model_checker = BetterTransformer.transform(bias_model_checker, keep_original_model=False)
66
- bias_checker = pipeline(
67
- "text-classification",
68
- model=bias_checker_model_name,
69
- tokenizer=bias_checker_model_name,
70
- )
71
- gc.collect()
72
- bias_corrector = pipeline( "text2text-generation", model=bias_corrector_model_name, accelerator="ort")
73
 
74
  # model score calibration
75
  iso_reg = joblib.load("isotonic_regression_model.joblib")
@@ -105,10 +105,11 @@ def update(text: str):
105
  return corrections_display
106
 
107
  def update_main(text: str):
108
- text = clean(text, lower=False)
109
- corrected_text, corrections = correct_text(text, bias_checker, bias_corrector)
110
- corrections_display = "\n\n".join([f"Original: {orig}\nCorrected: {corr}" for orig, corr in corrections])
111
- return corrected_text, corrections_display
 
112
 
113
  def split_text(text: str) -> list:
114
  sentences = sent_tokenize(text)
 
60
  text_mc_model = BetterTransformer.transform(text_mc_model)
61
  quillbot_model = BetterTransformer.transform(quillbot_model)
62
 
63
+ # bias_model_checker = AutoModelForSequenceClassification.from_pretrained(bias_checker_model_name)
64
+ # tokenizer = AutoTokenizer.from_pretrained(bias_checker_model_name)
65
+ # bias_model_checker = BetterTransformer.transform(bias_model_checker, keep_original_model=False)
66
+ # bias_checker = pipeline(
67
+ # "text-classification",
68
+ # model=bias_checker_model_name,
69
+ # tokenizer=bias_checker_model_name,
70
+ # )
71
+ # gc.collect()
72
+ # bias_corrector = pipeline( "text2text-generation", model=bias_corrector_model_name, accelerator="ort")
73
 
74
  # model score calibration
75
  iso_reg = joblib.load("isotonic_regression_model.joblib")
 
105
  return corrections_display
106
 
107
  def update_main(text: str):
108
+ # text = clean(text, lower=False)
109
+ # corrected_text, corrections = correct_text(text, bias_checker, bias_corrector)
110
+ # corrections_display = "\n\n".join([f"Original: {orig}\nCorrected: {corr}" for orig, corr in corrections])
111
+ # return corrected_text, corrections_display
112
+ return text, "Unavailable"
113
 
114
  def split_text(text: str) -> list:
115
  sentences = sent_tokenize(text)