Spaces:
Running
Running
eljanmahammadli
commited on
Commit
•
9df8406
1
Parent(s):
dee0f90
added human vs ai highlighter
Browse files- .gitignore +1 -6
- __pycache__/analysis.cpython-311.pyc +0 -0
- __pycache__/app.cpython-311.pyc +0 -0
- __pycache__/explainability.cpython-311.pyc +0 -0
- __pycache__/plagiarism.cpython-311.pyc +0 -0
- __pycache__/predictors.cpython-311.pyc +0 -0
- __pycache__/utils.cpython-310.pyc +0 -0
- __pycache__/utils.cpython-311.pyc +0 -0
- __pycache__/utils.cpython-39.pyc +0 -0
- __pycache__/writing_analysis.cpython-310.pyc +0 -0
- __pycache__/writing_analysis.cpython-39.pyc +0 -0
- app.py +38 -12
- highlighter.py +26 -17
- predictors.py +42 -33
.gitignore
CHANGED
@@ -1,6 +1 @@
|
|
1 |
-
__pycache__/
|
2 |
-
__pycache__/app.cpython-311.pyc
|
3 |
-
__pycache__/explainability.cpython-311.pyc
|
4 |
-
__pycache__/plagiarism.cpython-311.pyc
|
5 |
-
__pycache__/predictors.cpython-311.pyc
|
6 |
-
__pycache__/utils.cpython-311.pyc
|
|
|
1 |
+
__pycache__/
|
|
|
|
|
|
|
|
|
|
__pycache__/analysis.cpython-311.pyc
DELETED
Binary file (4.75 kB)
|
|
__pycache__/app.cpython-311.pyc
DELETED
Binary file (10.9 kB)
|
|
__pycache__/explainability.cpython-311.pyc
DELETED
Binary file (7.89 kB)
|
|
__pycache__/plagiarism.cpython-311.pyc
DELETED
Binary file (14.1 kB)
|
|
__pycache__/predictors.cpython-311.pyc
DELETED
Binary file (12 kB)
|
|
__pycache__/utils.cpython-310.pyc
DELETED
Binary file (7.17 kB)
|
|
__pycache__/utils.cpython-311.pyc
DELETED
Binary file (3.76 kB)
|
|
__pycache__/utils.cpython-39.pyc
DELETED
Binary file (7.19 kB)
|
|
__pycache__/writing_analysis.cpython-310.pyc
DELETED
Binary file (4.57 kB)
|
|
__pycache__/writing_analysis.cpython-39.pyc
DELETED
Binary file (4.64 kB)
|
|
app.py
CHANGED
@@ -8,6 +8,8 @@ from plagiarism import plagiarism_check, build_date
|
|
8 |
from highlighter import analyze_and_highlight
|
9 |
from utils import extract_text_from_pdf, len_validator
|
10 |
import yaml
|
|
|
|
|
11 |
|
12 |
np.set_printoptions(suppress=True)
|
13 |
|
@@ -17,6 +19,10 @@ with open("config.yaml", "r") as file:
|
|
17 |
model_list = params["MC_OUTPUT_LABELS"]
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
20 |
def ai_generated_test(option, input, models):
|
21 |
if option == "Human vs AI":
|
22 |
return predict_bc_scores(input), None
|
@@ -131,15 +137,17 @@ with gr.Blocks() as demo:
|
|
131 |
with gr.Row():
|
132 |
with gr.Column():
|
133 |
only_ai_btn = gr.Button("AI Check")
|
134 |
-
|
135 |
with gr.Column():
|
136 |
only_plagiarism_btn = gr.Button("Source Check")
|
137 |
|
138 |
-
|
139 |
-
|
140 |
|
141 |
with gr.Row():
|
142 |
-
|
|
|
|
|
|
|
143 |
|
144 |
with gr.Row():
|
145 |
depth_analysis_btn = gr.Button("Detailed Writing Analysis")
|
@@ -157,16 +165,21 @@ with gr.Blocks() as demo:
|
|
157 |
with gr.Column():
|
158 |
bcLabel = gr.Label(label="Source")
|
159 |
with gr.Column():
|
160 |
-
|
|
|
161 |
# with gr.Column():
|
162 |
# mc1on1Label = gr.Label(label="Creator(1 on 1 Approach)")
|
163 |
|
|
|
|
|
|
|
|
|
164 |
with gr.Row():
|
165 |
with gr.Column():
|
166 |
QLabel = gr.Label(label="Humanized")
|
167 |
with gr.Column():
|
168 |
-
|
169 |
-
|
170 |
with gr.Group():
|
171 |
with gr.Row():
|
172 |
month_from = gr.Dropdown(
|
@@ -280,13 +293,26 @@ with gr.Blocks() as demo:
|
|
280 |
api_name="depth_analysis",
|
281 |
)
|
282 |
|
283 |
-
|
284 |
-
fn=
|
285 |
inputs=[input_text],
|
286 |
-
outputs=[
|
287 |
-
api_name="
|
288 |
)
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
date_from = ""
|
292 |
date_to = ""
|
|
|
8 |
from highlighter import analyze_and_highlight
|
9 |
from utils import extract_text_from_pdf, len_validator
|
10 |
import yaml
|
11 |
+
from functools import partial
|
12 |
+
|
13 |
|
14 |
np.set_printoptions(suppress=True)
|
15 |
|
|
|
19 |
model_list = params["MC_OUTPUT_LABELS"]
|
20 |
|
21 |
|
22 |
+
analyze_and_highlight_bc = partial(analyze_and_highlight, model_type="bc")
|
23 |
+
analyze_and_highlight_quillbot = partial(analyze_and_highlight, model_type="quillbot")
|
24 |
+
|
25 |
+
|
26 |
def ai_generated_test(option, input, models):
|
27 |
if option == "Human vs AI":
|
28 |
return predict_bc_scores(input), None
|
|
|
137 |
with gr.Row():
|
138 |
with gr.Column():
|
139 |
only_ai_btn = gr.Button("AI Check")
|
|
|
140 |
with gr.Column():
|
141 |
only_plagiarism_btn = gr.Button("Source Check")
|
142 |
|
143 |
+
with gr.Column():
|
144 |
+
quillbot_check = gr.Button("Humanized Text Check")
|
145 |
|
146 |
with gr.Row():
|
147 |
+
with gr.Column():
|
148 |
+
bc_highlighter_button = gr.Button("Human vs. AI Highlighter")
|
149 |
+
with gr.Column():
|
150 |
+
quillbot_highlighter_button = gr.Button("Humanized Highlighter")
|
151 |
|
152 |
with gr.Row():
|
153 |
depth_analysis_btn = gr.Button("Detailed Writing Analysis")
|
|
|
165 |
with gr.Column():
|
166 |
bcLabel = gr.Label(label="Source")
|
167 |
with gr.Column():
|
168 |
+
bc_highlighter_output = gr.HTML(label="Human vs. AI Highlighter")
|
169 |
+
|
170 |
# with gr.Column():
|
171 |
# mc1on1Label = gr.Label(label="Creator(1 on 1 Approach)")
|
172 |
|
173 |
+
with gr.Row():
|
174 |
+
with gr.Column():
|
175 |
+
mcLabel = gr.Label(label="Creator")
|
176 |
+
|
177 |
with gr.Row():
|
178 |
with gr.Column():
|
179 |
QLabel = gr.Label(label="Humanized")
|
180 |
with gr.Column():
|
181 |
+
quillbot_highlighter_output = gr.HTML(label="Humanized Highlighter")
|
182 |
+
|
183 |
with gr.Group():
|
184 |
with gr.Row():
|
185 |
month_from = gr.Dropdown(
|
|
|
293 |
api_name="depth_analysis",
|
294 |
)
|
295 |
|
296 |
+
quillbot_highlighter_button.click(
|
297 |
+
fn=analyze_and_highlight_quillbot,
|
298 |
inputs=[input_text],
|
299 |
+
outputs=[quillbot_highlighter_output],
|
300 |
+
api_name="humanized_highlighter",
|
301 |
)
|
302 |
+
|
303 |
+
bc_highlighter_button.click(
|
304 |
+
fn=analyze_and_highlight_bc,
|
305 |
+
inputs=[input_text],
|
306 |
+
outputs=[bc_highlighter_output],
|
307 |
+
api_name="bc_highlighter",
|
308 |
+
)
|
309 |
+
|
310 |
+
# quillbot_highlighter.click(
|
311 |
+
# fn=analyze_and_highlight,
|
312 |
+
# inputs=[input_text],
|
313 |
+
# outputs=[highlighter_html],
|
314 |
+
# api_name="quillbot_highlighter",
|
315 |
+
# )
|
316 |
|
317 |
date_from = ""
|
318 |
date_to = ""
|
highlighter.py
CHANGED
@@ -1,43 +1,52 @@
|
|
1 |
from lime.lime_text import LimeTextExplainer
|
2 |
from nltk.tokenize import sent_tokenize
|
3 |
-
from predictors import
|
4 |
|
5 |
|
6 |
-
def explainer(text):
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
sentences = [sent for sent in sent_tokenize(text)]
|
|
|
|
|
|
|
|
|
11 |
weights_mapping = exp.as_map()[1]
|
12 |
sentences_weights = {sentence: 0 for sentence in sentences}
|
13 |
for idx, weight in weights_mapping:
|
14 |
if 0 <= idx < len(sentences):
|
15 |
sentences_weights[sentences[idx]] = weight
|
16 |
-
print(sentences_weights)
|
17 |
-
return sentences_weights
|
18 |
|
19 |
|
20 |
-
def analyze_and_highlight(text):
|
21 |
highlighted_text = ""
|
22 |
-
sentences_weights = explainer(text)
|
23 |
min_weight = min(sentences_weights.values())
|
24 |
max_weight = max(sentences_weights.values())
|
25 |
|
26 |
for sentence, weight in sentences_weights.items():
|
27 |
normalized_weight = (weight - min_weight) / (max_weight - min_weight)
|
28 |
if weight >= 0:
|
29 |
-
color = f
|
30 |
else:
|
31 |
-
color =
|
|
|
|
|
32 |
|
33 |
sentence = sentence.strip()
|
34 |
if not sentence:
|
35 |
continue
|
36 |
-
|
37 |
-
highlighted_sentence = f'<span style="background-color: {color}; color: black;">{sentence}</span> '
|
38 |
-
highlighted_text += highlighted_sentence
|
39 |
-
|
40 |
-
return highlighted_text
|
41 |
-
|
42 |
|
|
|
|
|
|
|
|
|
43 |
|
|
|
|
1 |
from lime.lime_text import LimeTextExplainer
|
2 |
from nltk.tokenize import sent_tokenize
|
3 |
+
from predictors import predict_for_explainanility
|
4 |
|
5 |
|
6 |
+
def explainer(text, model_type):
|
7 |
+
def predictor_wrapper(text):
|
8 |
+
return predict_for_explainanility(text=text, model_type=model_type)
|
9 |
+
|
10 |
+
class_names = ["negative", "positive"]
|
11 |
+
explainer_ = LimeTextExplainer(
|
12 |
+
class_names=class_names, split_expression=sent_tokenize
|
13 |
+
)
|
14 |
sentences = [sent for sent in sent_tokenize(text)]
|
15 |
+
num_sentences = len(sentences)
|
16 |
+
exp = explainer_.explain_instance(
|
17 |
+
text, predictor_wrapper, num_features=num_sentences, num_samples=500
|
18 |
+
)
|
19 |
weights_mapping = exp.as_map()[1]
|
20 |
sentences_weights = {sentence: 0 for sentence in sentences}
|
21 |
for idx, weight in weights_mapping:
|
22 |
if 0 <= idx < len(sentences):
|
23 |
sentences_weights[sentences[idx]] = weight
|
24 |
+
print(sentences_weights, model_type)
|
25 |
+
return sentences_weights, exp
|
26 |
|
27 |
|
28 |
+
def analyze_and_highlight(text, model_type):
|
29 |
highlighted_text = ""
|
30 |
+
sentences_weights, _ = explainer(text, model_type)
|
31 |
min_weight = min(sentences_weights.values())
|
32 |
max_weight = max(sentences_weights.values())
|
33 |
|
34 |
for sentence, weight in sentences_weights.items():
|
35 |
normalized_weight = (weight - min_weight) / (max_weight - min_weight)
|
36 |
if weight >= 0:
|
37 |
+
color = f"rgba(255, {255 * (1 - normalized_weight)}, {255 * (1 - normalized_weight)}, 1)"
|
38 |
else:
|
39 |
+
color = (
|
40 |
+
f"rgba({255 * normalized_weight}, 255, {255 * normalized_weight}, 1)"
|
41 |
+
)
|
42 |
|
43 |
sentence = sentence.strip()
|
44 |
if not sentence:
|
45 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
highlighted_sentence = (
|
48 |
+
f'<span style="background-color: {color}; color: black;">{sentence}</span> '
|
49 |
+
)
|
50 |
+
highlighted_text += highlighted_sentence
|
51 |
|
52 |
+
return highlighted_text
|
predictors.py
CHANGED
@@ -50,9 +50,16 @@ tokenizers_1on1 = {}
|
|
50 |
models_1on1 = {}
|
51 |
for model_name, model in zip(mc_label_map, text_1on1_models):
|
52 |
tokenizers_1on1[model_name] = AutoTokenizer.from_pretrained(model)
|
53 |
-
models_1on1[model_name] = (
|
54 |
-
|
55 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
|
58 |
def split_text_allow_complete_sentences_nltk(
|
@@ -153,10 +160,30 @@ def predict_quillbot(text):
|
|
153 |
return q_score
|
154 |
|
155 |
|
156 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
with torch.no_grad():
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
tensor_logits = outputs[0]
|
161 |
probas = F.softmax(tensor_logits).detach().cpu().numpy()
|
162 |
return probas
|
@@ -196,9 +223,7 @@ def predict_mc_scores(input):
|
|
196 |
bc_scores = []
|
197 |
mc_scores = []
|
198 |
|
199 |
-
samples_len_bc = len(
|
200 |
-
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
201 |
-
)
|
202 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
203 |
for i in range(samples_len_bc):
|
204 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
@@ -209,9 +234,7 @@ def predict_mc_scores(input):
|
|
209 |
bc_score_list = average_bc_scores.tolist()
|
210 |
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
|
211 |
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
212 |
-
samples_len_mc = len(
|
213 |
-
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
214 |
-
)
|
215 |
for i in range(samples_len_mc):
|
216 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
217 |
mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
|
@@ -234,9 +257,7 @@ def predict_mc_scores(input):
|
|
234 |
|
235 |
def predict_bc_scores(input):
|
236 |
bc_scores = []
|
237 |
-
samples_len_bc = len(
|
238 |
-
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
239 |
-
)
|
240 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
241 |
for i in range(samples_len_bc):
|
242 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
@@ -274,9 +295,7 @@ def predict_1on1_combined(input):
|
|
274 |
|
275 |
|
276 |
def predict_1on1_single(input, model):
|
277 |
-
predictions = predict_1on1(
|
278 |
-
models_1on1[model], tokenizers_1on1[model], input
|
279 |
-
)[1]
|
280 |
return predictions
|
281 |
|
282 |
|
@@ -288,9 +307,7 @@ def predict_1on1_scores(input, models):
|
|
288 |
print(f"Models to Test: {models}")
|
289 |
# BC SCORE
|
290 |
bc_scores = []
|
291 |
-
samples_len_bc = len(
|
292 |
-
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
293 |
-
)
|
294 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
295 |
for i in range(samples_len_bc):
|
296 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
@@ -305,17 +322,13 @@ def predict_1on1_scores(input, models):
|
|
305 |
if len(models) > 1:
|
306 |
print("Starting MC")
|
307 |
mc_scores = []
|
308 |
-
segments_mc = split_text_allow_complete_sentences_nltk(
|
309 |
-
input, type_det="mc"
|
310 |
-
)
|
311 |
samples_len_mc = len(
|
312 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
313 |
)
|
314 |
for i in range(samples_len_mc):
|
315 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
316 |
-
mc_score = predict_mc(
|
317 |
-
text_mc_model, text_mc_tokenizer, cleaned_text_mc
|
318 |
-
)
|
319 |
mc_scores.append(mc_score)
|
320 |
mc_scores_array = np.array(mc_scores)
|
321 |
average_mc_scores = np.mean(mc_scores_array, axis=0)
|
@@ -325,9 +338,7 @@ def predict_1on1_scores(input, models):
|
|
325 |
mc_score[label.upper()] = score
|
326 |
|
327 |
mc_score = {
|
328 |
-
key: mc_score[key.upper()]
|
329 |
-
for key in models
|
330 |
-
if key.upper() in mc_score
|
331 |
}
|
332 |
total = sum(mc_score.values())
|
333 |
# Normalize each value by dividing it by the total
|
@@ -342,9 +353,7 @@ def predict_1on1_scores(input, models):
|
|
342 |
elif len(models) == 1:
|
343 |
print("Starting 1on1")
|
344 |
mc_scores = []
|
345 |
-
segments_mc = split_text_allow_complete_sentences_nltk(
|
346 |
-
input, type_det="mc"
|
347 |
-
)
|
348 |
samples_len_mc = len(
|
349 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
350 |
)
|
|
|
50 |
models_1on1 = {}
|
51 |
for model_name, model in zip(mc_label_map, text_1on1_models):
|
52 |
tokenizers_1on1[model_name] = AutoTokenizer.from_pretrained(model)
|
53 |
+
models_1on1[model_name] = AutoModelForSequenceClassification.from_pretrained(
|
54 |
+
model
|
55 |
+
).to(device)
|
56 |
+
|
57 |
+
# proxy models for explainability
|
58 |
+
mini_model_name = "polygraf-ai/bc-model-bert-mini"
|
59 |
+
bc_tokenizer_mini = AutoTokenizer.from_pretrained(mini_model_name)
|
60 |
+
bc_model_mini = AutoModelForSequenceClassification.from_pretrained(mini_model_name).to(
|
61 |
+
device
|
62 |
+
)
|
63 |
|
64 |
|
65 |
def split_text_allow_complete_sentences_nltk(
|
|
|
160 |
return q_score
|
161 |
|
162 |
|
163 |
+
def predict_for_explainanility(text, model_type=None):
|
164 |
+
if model_type == "quillbot":
|
165 |
+
cleaning = False
|
166 |
+
max_length = 256
|
167 |
+
model = quillbot_model
|
168 |
+
tokenizer = quillbot_tokenizer
|
169 |
+
elif model_type == "bc":
|
170 |
+
cleaning = True
|
171 |
+
max_length = 512
|
172 |
+
model = bc_model_mini
|
173 |
+
tokenizer = bc_tokenizer_mini
|
174 |
+
else:
|
175 |
+
raise ValueError("Invalid model type")
|
176 |
with torch.no_grad():
|
177 |
+
if cleaning:
|
178 |
+
text = [remove_special_characters(t) for t in text]
|
179 |
+
tokenized_text = tokenizer(
|
180 |
+
text,
|
181 |
+
return_tensors="pt",
|
182 |
+
padding="max_length",
|
183 |
+
truncation=True,
|
184 |
+
max_length=max_length,
|
185 |
+
).to(device)
|
186 |
+
outputs = model(**tokenized_text)
|
187 |
tensor_logits = outputs[0]
|
188 |
probas = F.softmax(tensor_logits).detach().cpu().numpy()
|
189 |
return probas
|
|
|
223 |
bc_scores = []
|
224 |
mc_scores = []
|
225 |
|
226 |
+
samples_len_bc = len(split_text_allow_complete_sentences_nltk(input, type_det="bc"))
|
|
|
|
|
227 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
228 |
for i in range(samples_len_bc):
|
229 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
|
234 |
bc_score_list = average_bc_scores.tolist()
|
235 |
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
|
236 |
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
237 |
+
samples_len_mc = len(split_text_allow_complete_sentences_nltk(input, type_det="mc"))
|
|
|
|
|
238 |
for i in range(samples_len_mc):
|
239 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
240 |
mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
|
|
|
257 |
|
258 |
def predict_bc_scores(input):
|
259 |
bc_scores = []
|
260 |
+
samples_len_bc = len(split_text_allow_complete_sentences_nltk(input, type_det="bc"))
|
|
|
|
|
261 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
262 |
for i in range(samples_len_bc):
|
263 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
|
295 |
|
296 |
|
297 |
def predict_1on1_single(input, model):
|
298 |
+
predictions = predict_1on1(models_1on1[model], tokenizers_1on1[model], input)[1]
|
|
|
|
|
299 |
return predictions
|
300 |
|
301 |
|
|
|
307 |
print(f"Models to Test: {models}")
|
308 |
# BC SCORE
|
309 |
bc_scores = []
|
310 |
+
samples_len_bc = len(split_text_allow_complete_sentences_nltk(input, type_det="bc"))
|
|
|
|
|
311 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
312 |
for i in range(samples_len_bc):
|
313 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
|
322 |
if len(models) > 1:
|
323 |
print("Starting MC")
|
324 |
mc_scores = []
|
325 |
+
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
|
|
|
|
326 |
samples_len_mc = len(
|
327 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
328 |
)
|
329 |
for i in range(samples_len_mc):
|
330 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
331 |
+
mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
|
|
|
|
|
332 |
mc_scores.append(mc_score)
|
333 |
mc_scores_array = np.array(mc_scores)
|
334 |
average_mc_scores = np.mean(mc_scores_array, axis=0)
|
|
|
338 |
mc_score[label.upper()] = score
|
339 |
|
340 |
mc_score = {
|
341 |
+
key: mc_score[key.upper()] for key in models if key.upper() in mc_score
|
|
|
|
|
342 |
}
|
343 |
total = sum(mc_score.values())
|
344 |
# Normalize each value by dividing it by the total
|
|
|
353 |
elif len(models) == 1:
|
354 |
print("Starting 1on1")
|
355 |
mc_scores = []
|
356 |
+
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
|
|
|
|
357 |
samples_len_mc = len(
|
358 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
359 |
)
|