Spaces:
Sleeping
Sleeping
eljanmahammadli
commited on
Commit
·
d176253
1
Parent(s):
42d5442
implemented depth analyis
Browse files- app.py +115 -1
- writing_analysis.py +3 -97
app.py
CHANGED
@@ -13,7 +13,22 @@ from scipy.special import softmax
|
|
13 |
from evaluate import load
|
14 |
from datetime import date
|
15 |
import nltk
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
np.set_printoptions(suppress=True)
|
19 |
|
@@ -240,6 +255,90 @@ def build_date(year, month, day):
|
|
240 |
return f"{year}{months[month]}{day}"
|
241 |
|
242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
# START OF GRADIO
|
244 |
|
245 |
title = "Copyright Checker"
|
@@ -281,6 +380,8 @@ with gr.Blocks() as demo:
|
|
281 |
only_plagiarism_btn = gr.Button("Plagiarism Check")
|
282 |
with gr.Column():
|
283 |
submit_btn = gr.Button("Full Check")
|
|
|
|
|
284 |
gr.Markdown(
|
285 |
"""
|
286 |
## Output
|
@@ -341,6 +442,12 @@ with gr.Blocks() as demo:
|
|
341 |
},
|
342 |
)
|
343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
submit_btn.click(
|
345 |
fn=main,
|
346 |
inputs=[
|
@@ -390,6 +497,13 @@ with gr.Blocks() as demo:
|
|
390 |
api_name="plagiarism_check",
|
391 |
)
|
392 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
date_from = ""
|
394 |
date_to = ""
|
395 |
|
|
|
13 |
from evaluate import load
|
14 |
from datetime import date
|
15 |
import nltk
|
16 |
+
|
17 |
+
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
|
18 |
+
import nltk, spacy, subprocess, torch
|
19 |
+
import plotly.graph_objects as go
|
20 |
+
from writing_analysis import (
|
21 |
+
normalize,
|
22 |
+
preprocess_text1,
|
23 |
+
preprocess_text2,
|
24 |
+
vocabulary_richness_ttr,
|
25 |
+
calculate_gunning_fog,
|
26 |
+
calculate_average_sentence_length,
|
27 |
+
calculate_average_word_length,
|
28 |
+
calculate_syntactic_tree_depth,
|
29 |
+
calculate_perplexity,
|
30 |
+
|
31 |
+
)
|
32 |
|
33 |
np.set_printoptions(suppress=True)
|
34 |
|
|
|
255 |
return f"{year}{months[month]}{day}"
|
256 |
|
257 |
|
258 |
+
# DEPTH ANALYSIS
|
259 |
+
print("loading depth analysis")
|
260 |
+
nltk.download('stopwords')
|
261 |
+
nltk.download('punkt')
|
262 |
+
nlp = spacy.load("en_core_web_sm")
|
263 |
+
command = ['python', '-m', 'spacy', 'download', 'en_core_web_sm']
|
264 |
+
|
265 |
+
# Execute the command
|
266 |
+
subprocess.run(command)
|
267 |
+
|
268 |
+
# for perplexity
|
269 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
270 |
+
model_id = "gpt2"
|
271 |
+
gpt2_model = GPT2LMHeadModel.from_pretrained(model_id).to(device)
|
272 |
+
gpt2_tokenizer = GPT2TokenizerFast.from_pretrained(model_id)
|
273 |
+
|
274 |
+
def depth_analysis(input_text):
|
275 |
+
|
276 |
+
# vocanulary richness
|
277 |
+
processed_words = preprocess_text1(input_text)
|
278 |
+
ttr_value = vocabulary_richness_ttr(processed_words)
|
279 |
+
|
280 |
+
# readability
|
281 |
+
gunning_fog = calculate_gunning_fog(input_text)
|
282 |
+
gunning_fog_norm = normalize(gunning_fog, min_value=0, max_value=20)
|
283 |
+
|
284 |
+
# average sentence length and average word length
|
285 |
+
words, sentences = preprocess_text2(input_text)
|
286 |
+
average_sentence_length = calculate_average_sentence_length(sentences)
|
287 |
+
average_word_length = calculate_average_word_length(words)
|
288 |
+
average_sentence_length_norm = normalize(average_sentence_length, min_value=0, max_value=40)
|
289 |
+
average_word_length_norm = normalize(average_word_length, min_value=0, max_value=8)
|
290 |
+
|
291 |
+
# syntactic_tree_depth
|
292 |
+
average_tree_depth = calculate_syntactic_tree_depth(nlp, input_text)
|
293 |
+
average_tree_depth_norm = normalize(average_tree_depth, min_value=0, max_value=10)
|
294 |
+
|
295 |
+
# perplexity
|
296 |
+
perplexity = calculate_perplexity(input_text, gpt2_model, gpt2_tokenizer, device)
|
297 |
+
perplexity_norm = normalize(perplexity, min_value=0, max_value=30)
|
298 |
+
|
299 |
+
features = {
|
300 |
+
"readability": gunning_fog_norm,
|
301 |
+
"syntactic tree depth": average_tree_depth_norm,
|
302 |
+
"vocabulary richness": ttr_value,
|
303 |
+
"perplexity": perplexity_norm,
|
304 |
+
"average sentence length": average_sentence_length_norm,
|
305 |
+
"average word length": average_word_length_norm,
|
306 |
+
}
|
307 |
+
|
308 |
+
print(features)
|
309 |
+
|
310 |
+
fig = go.Figure()
|
311 |
+
|
312 |
+
fig.add_trace(go.Scatterpolar(
|
313 |
+
r=list(features.values()),
|
314 |
+
theta=list(features.keys()),
|
315 |
+
fill='toself',
|
316 |
+
name='Radar Plot'
|
317 |
+
))
|
318 |
+
|
319 |
+
fig.update_layout(
|
320 |
+
polar=dict(
|
321 |
+
radialaxis=dict(
|
322 |
+
visible=True,
|
323 |
+
range=[0, 100],
|
324 |
+
)),
|
325 |
+
showlegend=False,
|
326 |
+
# autosize=False,
|
327 |
+
# width=600,
|
328 |
+
# height=600,
|
329 |
+
margin=dict(
|
330 |
+
l=10,
|
331 |
+
r=20,
|
332 |
+
b=10,
|
333 |
+
t=10,
|
334 |
+
# pad=100
|
335 |
+
),
|
336 |
+
)
|
337 |
+
|
338 |
+
return fig
|
339 |
+
|
340 |
+
|
341 |
+
|
342 |
# START OF GRADIO
|
343 |
|
344 |
title = "Copyright Checker"
|
|
|
380 |
only_plagiarism_btn = gr.Button("Plagiarism Check")
|
381 |
with gr.Column():
|
382 |
submit_btn = gr.Button("Full Check")
|
383 |
+
with gr.Column():
|
384 |
+
depth_analysis_btn = gr.Button("Depth Analysis")
|
385 |
gr.Markdown(
|
386 |
"""
|
387 |
## Output
|
|
|
442 |
},
|
443 |
)
|
444 |
|
445 |
+
with gr.Row():
|
446 |
+
with gr.Column():
|
447 |
+
writing_analysis_plot = gr.Plot(
|
448 |
+
label="Radar Plot"
|
449 |
+
)
|
450 |
+
|
451 |
submit_btn.click(
|
452 |
fn=main,
|
453 |
inputs=[
|
|
|
497 |
api_name="plagiarism_check",
|
498 |
)
|
499 |
|
500 |
+
depth_analysis_btn.click(
|
501 |
+
fn=depth_analysis,
|
502 |
+
inputs=[input_text],
|
503 |
+
outputs=[writing_analysis_plot],
|
504 |
+
api_name="depth_analysis",
|
505 |
+
)
|
506 |
+
|
507 |
date_from = ""
|
508 |
date_to = ""
|
509 |
|
writing_analysis.py
CHANGED
@@ -1,26 +1,10 @@
|
|
1 |
-
import re,
|
2 |
from nltk import FreqDist
|
3 |
from nltk.corpus import stopwords
|
4 |
from nltk.tokenize import word_tokenize, sent_tokenize
|
5 |
-
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
|
6 |
import torch
|
7 |
from tqdm import tqdm
|
8 |
-
import gradio as gr
|
9 |
-
import plotly.graph_objects as go
|
10 |
|
11 |
-
nltk.download('stopwords')
|
12 |
-
nltk.download('punkt')
|
13 |
-
nlp = spacy.load("en_core_web_sm")
|
14 |
-
command = ['python', '-m', 'spacy', 'download', 'en_core_web_sm']
|
15 |
-
|
16 |
-
# Execute the command
|
17 |
-
subprocess.run(command)
|
18 |
-
|
19 |
-
# for perplexity
|
20 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
-
model_id = "gpt2"
|
22 |
-
model = GPT2LMHeadModel.from_pretrained(model_id).to(device)
|
23 |
-
tokenizer = GPT2TokenizerFast.from_pretrained(model_id)
|
24 |
|
25 |
def normalize(value, min_value, max_value):
|
26 |
normalized_value = ((value - min_value) * 100) / (max_value - min_value)
|
@@ -79,7 +63,7 @@ def calculate_average_word_length(words):
|
|
79 |
def calculate_max_depth(sent):
|
80 |
return max(len(list(token.ancestors)) for token in sent)
|
81 |
|
82 |
-
def calculate_syntactic_tree_depth(text):
|
83 |
"""0-10 based on the histogram"""
|
84 |
doc = nlp(text)
|
85 |
sentence_depths = [calculate_max_depth(sent) for sent in doc.sents]
|
@@ -87,7 +71,7 @@ def calculate_syntactic_tree_depth(text):
|
|
87 |
return average_depth
|
88 |
|
89 |
# reference: https://huggingface.co/docs/transformers/perplexity
|
90 |
-
def calculate_perplexity(text, stride=512):
|
91 |
"""range 0-30 based on the histogram"""
|
92 |
encodings = tokenizer(text, return_tensors="pt")
|
93 |
max_length = model.config.n_positions
|
@@ -114,81 +98,3 @@ def calculate_perplexity(text, stride=512):
|
|
114 |
|
115 |
ppl = torch.exp(torch.stack(nlls).mean())
|
116 |
return ppl.item()
|
117 |
-
|
118 |
-
|
119 |
-
def radar_plot(input_text):
|
120 |
-
|
121 |
-
# vocanulary richness
|
122 |
-
processed_words = preprocess_text1(input_text)
|
123 |
-
ttr_value = vocabulary_richness_ttr(processed_words)
|
124 |
-
|
125 |
-
# readability
|
126 |
-
gunning_fog = calculate_gunning_fog(input_text)
|
127 |
-
gunning_fog_norm = normalize(gunning_fog, min_value=0, max_value=20)
|
128 |
-
|
129 |
-
# average sentence length and average word length
|
130 |
-
words, sentences = preprocess_text2(input_text)
|
131 |
-
average_sentence_length = calculate_average_sentence_length(sentences)
|
132 |
-
average_word_length = calculate_average_word_length(words)
|
133 |
-
average_sentence_length_norm = normalize(average_sentence_length, min_value=0, max_value=40)
|
134 |
-
average_word_length_norm = normalize(average_word_length, min_value=0, max_value=8)
|
135 |
-
|
136 |
-
# syntactic_tree_depth
|
137 |
-
average_tree_depth = calculate_syntactic_tree_depth(input_text)
|
138 |
-
average_tree_depth_norm = normalize(average_tree_depth, min_value=0, max_value=10)
|
139 |
-
|
140 |
-
# perplexity
|
141 |
-
perplexity = calculate_perplexity(input_text)
|
142 |
-
perplexity_norm = normalize(perplexity, min_value=0, max_value=30)
|
143 |
-
|
144 |
-
features = {
|
145 |
-
"readability": gunning_fog_norm,
|
146 |
-
"syntactic tree depth": average_tree_depth_norm,
|
147 |
-
"vocabulary richness": ttr_value,
|
148 |
-
"perplexity": perplexity_norm,
|
149 |
-
"average sentence length": average_sentence_length_norm,
|
150 |
-
"average word length": average_word_length_norm,
|
151 |
-
}
|
152 |
-
|
153 |
-
print(features)
|
154 |
-
|
155 |
-
fig = go.Figure()
|
156 |
-
|
157 |
-
fig.add_trace(go.Scatterpolar(
|
158 |
-
r=list(features.values()),
|
159 |
-
theta=list(features.keys()),
|
160 |
-
fill='toself',
|
161 |
-
name='Radar Plot'
|
162 |
-
))
|
163 |
-
|
164 |
-
fig.update_layout(
|
165 |
-
polar=dict(
|
166 |
-
radialaxis=dict(
|
167 |
-
visible=True,
|
168 |
-
range=[0, 100],
|
169 |
-
)),
|
170 |
-
showlegend=False,
|
171 |
-
# autosize=False,
|
172 |
-
# width=600,
|
173 |
-
# height=600,
|
174 |
-
margin=dict(
|
175 |
-
l=10,
|
176 |
-
r=20,
|
177 |
-
b=10,
|
178 |
-
t=10,
|
179 |
-
# pad=100
|
180 |
-
),
|
181 |
-
)
|
182 |
-
|
183 |
-
return fig
|
184 |
-
|
185 |
-
# Gradio Interface
|
186 |
-
interface = gr.Interface(
|
187 |
-
fn=radar_plot,
|
188 |
-
inputs=gr.Textbox(label="Input text"),
|
189 |
-
outputs=gr.Plot(label="Radar Plot"),
|
190 |
-
title="Writing analysis",
|
191 |
-
description="Enter text for writing analysis",
|
192 |
-
)
|
193 |
-
|
194 |
-
interface.launch()
|
|
|
1 |
+
import re, textstat
|
2 |
from nltk import FreqDist
|
3 |
from nltk.corpus import stopwords
|
4 |
from nltk.tokenize import word_tokenize, sent_tokenize
|
|
|
5 |
import torch
|
6 |
from tqdm import tqdm
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def normalize(value, min_value, max_value):
|
10 |
normalized_value = ((value - min_value) * 100) / (max_value - min_value)
|
|
|
63 |
def calculate_max_depth(sent):
|
64 |
return max(len(list(token.ancestors)) for token in sent)
|
65 |
|
66 |
+
def calculate_syntactic_tree_depth(nlp, text):
|
67 |
"""0-10 based on the histogram"""
|
68 |
doc = nlp(text)
|
69 |
sentence_depths = [calculate_max_depth(sent) for sent in doc.sents]
|
|
|
71 |
return average_depth
|
72 |
|
73 |
# reference: https://huggingface.co/docs/transformers/perplexity
|
74 |
+
def calculate_perplexity(text, model, tokenizer, device, stride=512):
|
75 |
"""range 0-30 based on the histogram"""
|
76 |
encodings = tokenizer(text, return_tensors="pt")
|
77 |
max_length = model.config.n_positions
|
|
|
98 |
|
99 |
ppl = torch.exp(torch.stack(nlls).mean())
|
100 |
return ppl.item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|