from urllib.request import urlopen, Request from googleapiclient.discovery import build import requests import httpx import re from bs4 import BeautifulSoup import re, math from collections import Counter import numpy as np import asyncio import nltk from sentence_transformers import SentenceTransformer, util import threading import torch import re import numpy as np import asyncio from datetime import date import nltk from unidecode import unidecode from scipy.special import softmax from transformers import AutoTokenizer import yaml import fitz import os def remove_accents(input_str): text_no_accents = unidecode(input_str) return text_no_accents def remove_special_characters(text): text = remove_accents(text) pattern = r'[^\w\s\d.,!?\'"()-;]+' text = re.sub(pattern, "", text) return text def remove_special_characters_2(text): pattern = r"[^a-zA-Z0-9 ]+" text = re.sub(pattern, "", text) return text def update_character_count(text): return f"{len(text)} characters" nltk.download("punkt") with open("config.yaml", "r") as file: params = yaml.safe_load(file) text_bc_model_path = params["TEXT_BC_MODEL_PATH"] text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path) def len_validator(text): min_tokens = 200 lengt = len(text_bc_tokenizer.tokenize(text=text, return_tensors="pt")) if lengt < min_tokens: return f"Warning! Input length is {lengt}. Please input a text that is greater than {min_tokens} tokens long. Recommended length {min_tokens*2} tokens." else: return f"Input length ({lengt}) is satisified." def extract_text_from_pdf(pdf_path): doc = fitz.open(pdf_path) text = "" for page in doc: text += page.get_text() return text WORD = re.compile(r"\w+") model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") # returns cosine similarity of two vectors # input: two vectors # output: integer between 0 and 1. # def get_cosine(vec1, vec2): # intersection = set(vec1.keys()) & set(vec2.keys()) # # calculating numerator # numerator = sum([vec1[x] * vec2[x] for x in intersection]) # # calculating denominator # sum1 = sum([vec1[x] ** 2 for x in vec1.keys()]) # sum2 = sum([vec2[x] ** 2 for x in vec2.keys()]) # denominator = math.sqrt(sum1) * math.sqrt(sum2) # # checking for divide by zero # if denominator == 0: # return 0.0 # else: # return float(numerator) / denominator # # converts given text into a vector # def text_to_vector(text): # # uses the Regular expression above and gets all words # words = WORD.findall(text) # # returns a counter of all the words (count of number of occurences) # return Counter(words) # # returns cosine similarity of two words # # uses: text_to_vector(text) and get_cosine(v1,v2) # def cosineSim(text1, text2): # vector1 = text_to_vector(text1) # vector2 = text_to_vector(text2) # # print vector1,vector2 # cosine = get_cosine(vector1, vector2) # return cosine # def cos_sim_torch(embedding_1, embedding_2): # return util.pytorch_cos_sim(embedding_1, embedding_2).item() # def embed_text(text): # return model.encode(text, convert_to_tensor=True) # def sentence_similarity(text1, text2): # embedding_1 = model.encode(text1, convert_to_tensor=True) # embedding_2 = model.encode(text2, convert_to_tensor=True) # o = util.pytorch_cos_sim(embedding_1, embedding_2) # return o.item() # def get_soup_requests(url): # page = requests.get(url) # if page.status_code == 200: # soup = BeautifulSoup(page.content, "html.parser") # return soup # print("HTML soup failed") # return None # def get_soup_httpx(url): # client = httpx.Client(timeout=30) # try: # page = client.get(url) # if page.status_code == httpx.codes.OK: # soup = BeautifulSoup(page.content, "html.parser") # return soup # except: # print("HTTPx soup failed") # return None # def getSentences(text): # from nltk.tokenize import sent_tokenize # sents = sent_tokenize(text) # two_sents = [] # for i in range(len(sents)): # if (i % 2) == 0: # two_sents.append(sents[i]) # else: # two_sents[len(two_sents) - 1] += " " + sents[i] # return two_sents # def googleSearch( # plag_option, # sentences, # urlCount, # scoreArray, # urlList, # sorted_date, # domains_to_skip, # api_key, # cse_id, # **kwargs, # ): # service = build("customsearch", "v1", developerKey=api_key) # for i, sentence in enumerate(sentences): # results = ( # service.cse() # .list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs) # .execute() # ) # if "items" in results and len(results["items"]) > 0: # for count, link in enumerate(results["items"]): # # stop after 3 pages # if count >= 3: # break # # skip user selected domains # if any( # ("." + domain) in link["link"] for domain in domains_to_skip # ): # continue # # clean up snippet of '...' # snippet = link["snippet"] # ind = snippet.find("...") # if ind < 20 and ind > 9: # snippet = snippet[ind + len("... ") :] # ind = snippet.find("...") # if ind > len(snippet) - 5: # snippet = snippet[:ind] # # update cosine similarity between snippet and given text # url = link["link"] # if url not in urlList: # urlList.append(url) # scoreArray.append([0] * len(sentences)) # urlCount[url] = urlCount[url] + 1 if url in urlCount else 1 # if plag_option == "Standard": # scoreArray[urlList.index(url)][i] = cosineSim( # sentence, snippet # ) # else: # scoreArray[urlList.index(url)][i] = sentence_similarity( # sentence, snippet # ) # else: # print("Google Search failed") # return urlCount, scoreArray # def getQueries(text, n): # # return n-grams of size n # words = text.split() # return [words[i : i + n] for i in range(len(words) - n + 1)] # def print2D(array): # print(np.array(array)) # def removePunc(text): # res = re.sub(r"[^\w\s]", "", text) # return res # async def get_url_data(url, client): # try: # r = await client.get(url) # # print(r.status_code) # if r.status_code == 200: # # print("in") # soup = BeautifulSoup(r.content, "html.parser") # return soup # except Exception: # print("HTTPx parallel soup failed") # return None # async def parallel_scrap(urls): # async with httpx.AsyncClient(timeout=30) as client: # tasks = [] # for url in urls: # tasks.append(get_url_data(url=url, client=client)) # results = await asyncio.gather(*tasks, return_exceptions=True) # return results # class TimeoutError(Exception): # pass # def matchingScore(sentence, content): # if sentence in content: # return 1 # sentence = removePunc(sentence) # content = removePunc(content) # if sentence in content: # return 1 # else: # n = 5 # ngrams = getQueries(sentence, n) # if len(ngrams) == 0: # return 0 # matched = [x for x in ngrams if " ".join(x) in content] # return len(matched) / len(ngrams) # # def matchingScoreWithTimeout(sentence, content): # # def timeout_handler(): # # raise TimeoutError("Function timed out") # # timer = threading.Timer(10, timeout_handler) # Set a timer for 2 seconds # # timer.start() # # try: # # score = sentence_similarity(sentence, content) # # # score = matchingScore(sentence, content) # # timer.cancel() # Cancel the timer if calculation completes before timeout # # return score # # except TimeoutError: # # return 0 # # async def matchingScoreAsync(sentences, content, content_idx, ScoreArray): # # content = removePunc(content) # # for j, sentence in enumerate(sentences): # # sentence = removePunc(sentence) # # if sentence in content: # # ScoreArray[content_idx][j] = 1 # # else: # # n = 5 # # ngrams = getQueries(sentence, n) # # if len(ngrams) == 0: # # return 0 # # matched = [x for x in ngrams if " ".join(x) in content] # # ScoreArray[content_idx][j] = len(matched) / len(ngrams) # # print( # # f"Analyzed {content_idx+1} of soups (SOUP SUCCEEDED)........................" # # ) # # return ScoreArray # async def matchingScoreAsync( # sentences, content, content_idx, ScoreArray, model, util # ): # content = removePunc(content) # for j, sentence in enumerate(sentences): # sentence = removePunc(sentence) # similarity_score = sentence_similarity(sentence, content, model, util) # ScoreArray[content_idx][j] = similarity_score # print( # f"Analyzed {content_idx+1} of contents (CONTENT ANALYZED)........................" # ) # return ScoreArray # async def parallel_analyze(soups, sentences, ScoreArray): # tasks = [] # for i, soup in enumerate(soups): # if soup: # page_content = soup.text # tasks.append( # matchingScoreAsync(sentences, page_content, i, ScoreArray) # ) # else: # print( # f"Analyzed {i+1} of soups (SOUP FAILED)........................" # ) # ScoreArray = await asyncio.gather(*tasks, return_exceptions=True) # return ScoreArray # async def parallel_analyze_2(soups, sentences, ScoreArray): # tasks = [[0] * len(ScoreArray[0]) for i in range(len(ScoreArray))] # for i, soup in enumerate(soups): # if soup: # page_content = soup.text # for j, sent in enumerate(sentences): # print( # f"Analyzing {i+1} of {len(soups)} soups with {j+1} of {len(sentences)} sentences........................" # ) # tasks[i][j] = sentence_similarity(sent, page_content) # else: # print( # f"Analyzed {i+1} of soups (SOUP FAILED)........................" # ) # ScoreArray = await asyncio.gather(*tasks, return_exceptions=True) # return ScoreArray