import torch import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification import nltk import torch.nn.functional as F import nltk from scipy.special import softmax import yaml from utils import * import joblib from optimum.bettertransformer import BetterTransformer import gc from cleantext import clean import gradio as gr from tqdm.auto import tqdm from transformers import pipeline from transformers import AutoModelForSequenceClassification, AutoTokenizer import nltk from nltk.tokenize import sent_tokenize from optimum.pipelines import pipeline with open("config.yaml", "r") as file: params = yaml.safe_load(file) nltk.download("punkt") nltk.download("stopwords") device_needed = "cuda" if torch.cuda.is_available() else "cpu" device = "cuda" if torch.cuda.is_available() else "cpu" print('DEVICE IS :' , device) text_bc_model_path = params["TEXT_BC_MODEL_PATH"] text_mc_model_path = params["TEXT_MC_MODEL_PATH"] text_quillbot_model_path = params["TEXT_QUILLBOT_MODEL_PATH"] quillbot_labels = params["QUILLBOT_LABELS"] mc_label_map = params["MC_OUTPUT_LABELS"] mc_token_size = int(params["MC_TOKEN_SIZE"]) bc_token_size = int(params["BC_TOKEN_SIZE"]) bias_checker_model_name = params['BIAS_CHECKER_MODEL_PATH'] bias_corrector_model_name = params['BIAS_CORRECTOR_MODEL_PATH'] # access_token = params['HF_TOKEN'] text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path) text_bc_model = AutoModelForSequenceClassification.from_pretrained(text_bc_model_path).to(device) text_mc_tokenizer = AutoTokenizer.from_pretrained(text_mc_model_path) text_mc_model = AutoModelForSequenceClassification.from_pretrained(text_mc_model_path).to(device) quillbot_tokenizer = AutoTokenizer.from_pretrained(text_quillbot_model_path) quillbot_model = AutoModelForSequenceClassification.from_pretrained(text_quillbot_model_path).to(device) # proxy models for explainability mini_bc_model_name = "polygraf-ai/bc-model" bc_tokenizer_mini = AutoTokenizer.from_pretrained(mini_bc_model_name) bc_model_mini = AutoModelForSequenceClassification.from_pretrained(mini_bc_model_name).to(device_needed) mini_humanizer_model_name = "polygraf-ai/humanizer-model" humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(mini_humanizer_model_name) humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(mini_humanizer_model_name).to(device_needed) bc_model_mini = BetterTransformer.transform(bc_model_mini) humanizer_model_mini = BetterTransformer.transform(humanizer_model_mini) text_bc_model = BetterTransformer.transform(text_bc_model) text_mc_model = BetterTransformer.transform(text_mc_model) quillbot_model = BetterTransformer.transform(quillbot_model) # bias_model_checker = AutoModelForSequenceClassification.from_pretrained(bias_checker_model_name) # tokenizer = AutoTokenizer.from_pretrained(bias_checker_model_name) # bias_model_checker = BetterTransformer.transform(bias_model_checker, keep_original_model=False) # bias_checker = pipeline( # "text-classification", # model=bias_checker_model_name, # tokenizer=bias_checker_model_name, # ) # gc.collect() # bias_corrector = pipeline( "text2text-generation", model=bias_corrector_model_name, accelerator="ort") # model score calibration iso_reg = joblib.load("isotonic_regression_model.joblib") def split_text(text: str) -> list: sentences = sent_tokenize(text) return [[sentence] for sentence in sentences] def correct_text(text: str, bias_checker, bias_corrector, separator: str = " ") -> tuple: sentence_batches = split_text(text) corrected_text = [] corrections = [] for batch in tqdm(sentence_batches, total=len(sentence_batches), desc="correcting text.."): raw_text = " ".join(batch) results = bias_checker(raw_text) if results[0]["label"] != "LABEL_1" or (results[0]["label"] == "LABEL_1" and results[0]["score"] < 0.9): corrected_batch = bias_corrector(raw_text) corrected_version = corrected_batch[0]["generated_text"] corrected_text.append(corrected_version) corrections.append((raw_text, corrected_version)) else: corrected_text.append(raw_text) corrected_text = separator.join(corrected_text) return corrected_text, corrections def update(text: str): text = clean(text, lower=False) corrected_text, corrections = correct_text(text, bias_checker, bias_corrector) corrections_display = "".join([f"{corr}" for orig, corr in corrections]) if corrections_display == "": corrections_display = text return corrections_display def update_main(text: str): # text = clean(text, lower=False) # corrected_text, corrections = correct_text(text, bias_checker, bias_corrector) # corrections_display = "\n\n".join([f"Original: {orig}\nCorrected: {corr}" for orig, corr in corrections]) # return corrected_text, corrections_display return text, "Unavailable" def split_text(text: str) -> list: sentences = sent_tokenize(text) return [[sentence] for sentence in sentences] def get_token_length(tokenizer, sentence): return len(tokenizer.tokenize(sentence)) def split_text_allow_complete_sentences_nltk(text, type_det="bc"): sentences = sent_tokenize(text) chunks = [] current_chunk = [] current_length = 0 if type_det == "bc": tokenizer = text_bc_tokenizer max_tokens = bc_token_size elif type_det == "mc": tokenizer = text_mc_tokenizer max_tokens = mc_token_size elif type_det == "quillbot": tokenizer = quillbot_tokenizer max_tokens = 256 def add_sentence_to_chunk(sentence): nonlocal current_chunk, current_length sentence_length = get_token_length(tokenizer, sentence) if current_length + sentence_length > max_tokens: chunks.append((current_chunk, current_length)) current_chunk = [] current_length = 0 current_chunk.append(sentence) current_length += sentence_length for sentence in sentences: add_sentence_to_chunk(sentence) if current_chunk: chunks.append((current_chunk, current_length)) adjusted_chunks = [] while chunks: chunk = chunks.pop(0) if len(chunks) > 0 and chunk[1] < max_tokens / 2: next_chunk = chunks.pop(0) combined_length = chunk[1] + next_chunk[1] if combined_length <= max_tokens: adjusted_chunks.append((chunk[0] + next_chunk[0], combined_length)) else: adjusted_chunks.append(chunk) chunks.insert(0, next_chunk) else: adjusted_chunks.append(chunk) result_chunks = [" ".join(chunk[0]) for chunk in adjusted_chunks] return result_chunks def predict_quillbot(text, bias_buster_selected): if bias_buster_selected: text = update(text) with torch.no_grad(): quillbot_model.eval() tokenized_text = quillbot_tokenizer( text, padding="max_length", truncation=True, max_length=256, return_tensors="pt", ).to(device) output = quillbot_model(**tokenized_text) output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0] q_score = { "Humanized": output_norm[1].item(), "Original": output_norm[0].item(), } return q_score def predict_for_explainanility(text, model_type=None): if model_type == "quillbot": cleaning = False max_length = 256 model = humanizer_model_mini tokenizer = humanizer_tokenizer_mini elif model_type == "bc": cleaning = True max_length = bc_token_size model = bc_model_mini tokenizer = bc_tokenizer_mini else: raise ValueError("Invalid model type") with torch.no_grad(): if cleaning: text = [remove_special_characters(t) for t in text] tokenized_text = tokenizer( text, return_tensors="pt", padding="max_length", truncation=True, max_length=max_length, ).to(device_needed) outputs = model(**tokenized_text) tensor_logits = outputs[0] probas = F.softmax(tensor_logits).detach().cpu().numpy() return probas def predict_bc(model, tokenizer, text): with torch.no_grad(): model.eval() tokens = text_bc_tokenizer( text, padding="max_length", truncation=True, max_length=bc_token_size, return_tensors="pt", ).to(device) output = model(**tokens) output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0] return output_norm def predict_mc(model, tokenizer, text): with torch.no_grad(): model.eval() tokens = text_mc_tokenizer( text, padding="max_length", truncation=True, return_tensors="pt", max_length=mc_token_size, ).to(device) output = model(**tokens) output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0] return output_norm def predict_bc_scores(input): bc_scores = [] samples_len_bc = len( split_text_allow_complete_sentences_nltk(input, type_det="bc") ) segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc") for i in range(samples_len_bc): cleaned_text_bc = remove_special_characters(segments_bc[i]) bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc) bc_scores.append(bc_score) bc_scores_array = np.array(bc_scores) average_bc_scores = np.mean(bc_scores_array, axis=0) bc_score_list = average_bc_scores.tolist() print( f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}" ) # isotonic regression calibration ai_score = iso_reg.predict([bc_score_list[1]])[0] human_score = 1 - ai_score bc_score = {"AI": ai_score, "HUMAN": human_score} print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}") print(f"Input Text: {cleaned_text_bc}") return bc_score def predict_mc_scores(input): # BC SCORE bc_scores = [] samples_len_bc = len( split_text_allow_complete_sentences_nltk(input, type_det="bc") ) segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc") for i in range(samples_len_bc): cleaned_text_bc = remove_special_characters(segments_bc[i]) bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc) bc_scores.append(bc_score) bc_scores_array = np.array(bc_scores) average_bc_scores = np.mean(bc_scores_array, axis=0) bc_score_list = average_bc_scores.tolist() print( f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}" ) # isotonic regression calibration ai_score = iso_reg.predict([bc_score_list[1]])[0] human_score = 1 - ai_score bc_score = {"AI": ai_score, "HUMAN": human_score} print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}") mc_scores = [] segments_mc = split_text_allow_complete_sentences_nltk( input, type_det="mc" ) samples_len_mc = len( split_text_allow_complete_sentences_nltk(input, type_det="mc") ) for i in range(samples_len_mc): cleaned_text_mc = remove_special_characters(segments_mc[i]) mc_score = predict_mc( text_mc_model, text_mc_tokenizer, cleaned_text_mc ) mc_scores.append(mc_score) mc_scores_array = np.array(mc_scores) average_mc_scores = np.mean(mc_scores_array, axis=0) mc_score_list = average_mc_scores.tolist() mc_score = {} for score, label in zip(mc_score_list, mc_label_map): mc_score[label.upper()] = score sum_prob = 1 - bc_score["HUMAN"] for key, value in mc_score.items(): mc_score[key] = value * sum_prob print("MC Score:", mc_score) if sum_prob < 0.01: mc_score = {} return mc_score