Spaces:
Runtime error
Runtime error
lmoss
commited on
Commit
·
cd2924d
1
Parent(s):
53bea02
seeing if runtime error can be fixed
Browse files
app.py
CHANGED
@@ -8,8 +8,15 @@ import numpy as np
|
|
8 |
import numpy.typing as npt
|
9 |
from dcgan import DCGAN3D_G
|
10 |
import os
|
|
|
11 |
pv.start_xvfb()
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def download_checkpoint(url: str, path: str) -> None:
|
14 |
resp = requests.get(url)
|
15 |
|
@@ -61,87 +68,91 @@ def create_matplotlib_figure(img: npt.ArrayLike, midpoint: int):
|
|
61 |
a.set_axis_off()
|
62 |
return fig
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
st.markdown(
|
67 |
-
"""
|
68 |
-
### Author
|
69 |
-
_[Lukas Mosser](https://scholar.google.com/citations?user=y0R9snMAAAAJ&hl=en&oi=ao) (2022)_ - :bird:[porestar](https://twitter.com/porestar)
|
70 |
-
|
71 |
-
## Description
|
72 |
-
This is a demo of the Generative Adversarial Network (GAN, [Goodfellow 2014](https://arxiv.org/abs/1406.2661)) trained for our publication [PorousMediaGAN](https://github.com/LukasMosser/PorousMediaGan)
|
73 |
-
published in Physical Review E ([Mosser et. al 2017](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.043309))
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
## The Demo
|
81 |
-
Slices through the 3D volume are rendered using [PyVista](https://www.pyvista.org/) and [PyThreeJS](https://pythreejs.readthedocs.io/en/stable/)
|
82 |
-
|
83 |
-
The model itself currently runs on the :hugging_face: [Huggingface Spaces](https://huggingface.co/spaces) instance.
|
84 |
-
Future migration to the :hugging_face: [Huggingface Models](https://huggingface.co/models) repository is possible.
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
st.
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import numpy.typing as npt
|
9 |
from dcgan import DCGAN3D_G
|
10 |
import os
|
11 |
+
import pathlib
|
12 |
pv.start_xvfb()
|
13 |
|
14 |
+
STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / 'static'
|
15 |
+
|
16 |
+
DOWNLOADS_PATH = (STREAMLIT_STATIC_PATH / "downloads")
|
17 |
+
if not DOWNLOADS_PATH.is_dir():
|
18 |
+
DOWNLOADS_PATH.mkdir()
|
19 |
+
|
20 |
def download_checkpoint(url: str, path: str) -> None:
|
21 |
resp = requests.get(url)
|
22 |
|
|
|
68 |
a.set_axis_off()
|
69 |
return fig
|
70 |
|
71 |
+
def main():
|
72 |
+
st.title("Generating Porous Media with GANs")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
st.markdown(
|
75 |
+
"""
|
76 |
+
### Author
|
77 |
+
_[Lukas Mosser](https://scholar.google.com/citations?user=y0R9snMAAAAJ&hl=en&oi=ao) (2022)_ - :bird:[porestar](https://twitter.com/porestar)
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
## Description
|
80 |
+
This is a demo of the Generative Adversarial Network (GAN, [Goodfellow 2014](https://arxiv.org/abs/1406.2661)) trained for our publication [PorousMediaGAN](https://github.com/LukasMosser/PorousMediaGan)
|
81 |
+
published in Physical Review E ([Mosser et. al 2017](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.043309))
|
82 |
|
83 |
+
The model is a pretrained 3D Deep Convolutional GAN ([Radford 2015](https://arxiv.org/abs/1511.06434)) that generates a volumetric image of a porous medium, here a Berea sandstone, from a set of pretrained weights.
|
84 |
+
|
85 |
+
## Intent
|
86 |
+
I hope this encourages others to create interactive demos of their research for knowledge sharing and validation.
|
87 |
+
|
88 |
+
## The Demo
|
89 |
+
Slices through the 3D volume are rendered using [PyVista](https://www.pyvista.org/) and [PyThreeJS](https://pythreejs.readthedocs.io/en/stable/)
|
90 |
+
|
91 |
+
The model itself currently runs on the :hugging_face: [Huggingface Spaces](https://huggingface.co/spaces) instance.
|
92 |
+
Future migration to the :hugging_face: [Huggingface Models](https://huggingface.co/models) repository is possible.
|
93 |
+
|
94 |
+
### Interactive Model Parameters
|
95 |
+
The GAN used here in this study is fully convolutional "_Look Ma' no MLP's_": Changing the spatial extent of the latent space vector _z_
|
96 |
+
allows one to generate larger synthetic images.
|
97 |
+
|
98 |
+
"""
|
99 |
+
, unsafe_allow_html=True)
|
100 |
+
|
101 |
+
view_width = 400
|
102 |
+
view_height = 400
|
103 |
+
|
104 |
+
model_fname = "berea_generator_epoch_24.pth"
|
105 |
+
checkpoint_url = "https://github.com/LukasMosser/PorousMediaGan/blob/master/checkpoints/berea/{0:}?raw=true".format(model_fname)
|
106 |
+
|
107 |
+
download_checkpoint(checkpoint_url, (DOWNLOADS_PATH / model_fname))
|
108 |
+
|
109 |
+
latent_size = st.slider("Latent Space Size z", min_value=1, max_value=5, step=1)
|
110 |
+
img = generate_image((DOWNLOADS_PATH / model_fname), latent_size=latent_size)
|
111 |
+
slices, mesh, dist = create_uniform_mesh_marching_cubes(img)
|
112 |
+
|
113 |
+
pv.set_plot_theme("document")
|
114 |
+
pl = pv.Plotter(shape=(1, 1),
|
115 |
+
window_size=(view_width, view_height))
|
116 |
+
_ = pl.add_mesh(slices, cmap="gray")
|
117 |
+
pl.export_html((DOWNLOADS_PATH / 'slices.html'))
|
118 |
+
|
119 |
+
pl = pv.Plotter(shape=(1, 1),
|
120 |
+
window_size=(view_width, view_height))
|
121 |
+
_ = pl.add_mesh(mesh, scalars=dist)
|
122 |
+
pl.export_html((DOWNLOADS_PATH / 'mesh.html'))
|
123 |
+
|
124 |
+
st.header("2D Cross-Section of Generated Volume")
|
125 |
+
fig = create_matplotlib_figure(img, img.shape[0]//2)
|
126 |
+
st.pyplot(fig=fig)
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
HtmlFile = open((DOWNLOADS_PATH / 'slices.html'), 'r', encoding='utf-8')
|
131 |
+
source_code = HtmlFile.read()
|
132 |
+
st.header("3D Intersections")
|
133 |
+
components.html(source_code, width=view_width, height=view_height)
|
134 |
+
st.markdown("_Click and drag to spin, right click to shift._")
|
135 |
+
|
136 |
+
HtmlFile = open((DOWNLOADS_PATH / 'mesh.html'), 'r', encoding='utf-8')
|
137 |
+
source_code = HtmlFile.read()
|
138 |
+
st.header("3D Pore Space Mesh")
|
139 |
+
components.html(source_code, width=view_width, height=view_height)
|
140 |
+
st.markdown("_Click and drag to spin, right click to shift._")
|
141 |
+
|
142 |
+
st.markdown("""
|
143 |
+
## Citation
|
144 |
+
If you use our code for your own research, we would be grateful if you cite our publication:
|
145 |
+
```
|
146 |
+
@article{pmgan2017,
|
147 |
+
title={Reconstruction of three-dimensional porous media using generative adversarial neural networks},
|
148 |
+
author={Mosser, Lukas and Dubrule, Olivier and Blunt, Martin J.},
|
149 |
+
journal={arXiv preprint arXiv:1704.03225},
|
150 |
+
year={2017}
|
151 |
+
}```
|
152 |
+
""")
|
153 |
+
|
154 |
+
#os.remove("slices.html")
|
155 |
+
#os.remove("mesh.html")
|
156 |
+
|
157 |
+
if __name__ == "__main__":
|
158 |
+
main()
|