import streamlit as st import pyvista as pv from dcgan import DCGAN3D_G import torch import requests import time url = "https://github.com/LukasMosser/PorousMediaGan/blob/master/checkpoints/berea/berea_generator_epoch_24.pth?raw=true" # If repo is private - we need to add a token in header: resp = requests.get(url) with open('berea_generator_epoch_24.pth', 'wb') as f: f.write(resp.content) time.sleep(5) print(resp.status_code) st.text(resp.status_code) pv.set_plot_theme("document") pl = pv.Plotter(shape=(1, 1), window_size=(800, 800)) netG = DCGAN3D_G(64, 512, 1, 32, 1) netG.load_state_dict(torch.load("berea_generator_epoch_24.pth", map_location=torch.device('cpu'))) z = torch.randn(1, 512, 3, 3, 3) with torch.no_grad(): X = netG(z) st.image((X[0, 0, 32].numpy()+1)/2, output_format="png") """ data = examples.load_channels() channels = data.threshold([0.9, 1.1]) print(channels) bodies = channels.split_bodies() # Now remove all bodies with a small volume for key in bodies.keys(): b = bodies[key] vol = b.volume if vol < 1000.0: del bodies[key] continue # Now lets add a volume array to all blocks b.cell_data["TOTAL VOLUME"] = np.full(b.n_cells, vol) for i, body in enumerate(bodies): print(f"Body {i:02d} volume: {body.volume:.3f}") pl.add_mesh(bodies) pl.export_html('pyvista.html') st.header("test html import") view_width = 800 view_height = 800 HtmlFile = open("pyvista.html", 'r', encoding='utf-8') source_code = HtmlFile.read() components.html(source_code, width=view_width, height=view_height) #snippet = embed.embed_snippet(views=view(reader.GetOutput())) #html = embed.html_template.format(title="", snippet=snippet) #components.html(html, width=view_width, height=view_height)"""