Spaces:
Runtime error
Runtime error
portalniy-dev
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset, concatenate_datasets
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
5 |
+
|
6 |
+
# Predefined datasets
|
7 |
+
dataset_names = [
|
8 |
+
'imdb',
|
9 |
+
'ag_news',
|
10 |
+
'squad',
|
11 |
+
'cnn_dailymail',
|
12 |
+
'wiki40b'
|
13 |
+
]
|
14 |
+
|
15 |
+
# Function to load and prepare datasets
|
16 |
+
def load_and_prepare_datasets():
|
17 |
+
datasets = [load_dataset(name) for name in dataset_names]
|
18 |
+
|
19 |
+
# Concatenate train and validation datasets
|
20 |
+
train_dataset = concatenate_datasets([ds['train'] for ds in datasets if 'train' in ds])
|
21 |
+
eval_dataset = concatenate_datasets([ds['validation'] for ds in datasets if 'validation' in ds])
|
22 |
+
|
23 |
+
return train_dataset, eval_dataset
|
24 |
+
|
25 |
+
# Function to preprocess data
|
26 |
+
def preprocess_function(examples):
|
27 |
+
return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=512)
|
28 |
+
|
29 |
+
# Function to train the model
|
30 |
+
def train_model():
|
31 |
+
global model, tokenizer
|
32 |
+
|
33 |
+
# Load model and tokenizer
|
34 |
+
model_name = 'gpt2' # You can choose another model if desired
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
37 |
+
|
38 |
+
# Load and prepare datasets
|
39 |
+
train_dataset, eval_dataset = load_and_prepare_datasets()
|
40 |
+
|
41 |
+
# Preprocess the datasets
|
42 |
+
train_dataset = train_dataset.map(preprocess_function, batched=True)
|
43 |
+
eval_dataset = eval_dataset.map(preprocess_function, batched=True)
|
44 |
+
|
45 |
+
# Set training arguments
|
46 |
+
training_args = TrainingArguments(
|
47 |
+
output_dir='./results',
|
48 |
+
num_train_epochs=3,
|
49 |
+
per_device_train_batch_size=4,
|
50 |
+
per_device_eval_batch_size=4,
|
51 |
+
warmup_steps=500,
|
52 |
+
weight_decay=0.01,
|
53 |
+
logging_dir='./logs',
|
54 |
+
logging_steps=10,
|
55 |
+
save_steps=1000,
|
56 |
+
evaluation_strategy="steps",
|
57 |
+
)
|
58 |
+
|
59 |
+
# Train the model
|
60 |
+
trainer = Trainer(
|
61 |
+
model=model,
|
62 |
+
args=training_args,
|
63 |
+
train_dataset=train_dataset,
|
64 |
+
eval_dataset=eval_dataset,
|
65 |
+
)
|
66 |
+
|
67 |
+
trainer.train()
|
68 |
+
|
69 |
+
return "Model trained successfully!"
|
70 |
+
|
71 |
+
# Function to generate text
|
72 |
+
def generate_text(prompt):
|
73 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
74 |
+
output = model.generate(input_ids, max_length=100)
|
75 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
76 |
+
|
77 |
+
return generated_text
|
78 |
+
|
79 |
+
# Gradio interface
|
80 |
+
with gr.Blocks() as demo:
|
81 |
+
gr.Markdown("# LLM Training and Text Generation")
|
82 |
+
|
83 |
+
with gr.Row():
|
84 |
+
with gr.Column():
|
85 |
+
train_button = gr.Button("Train Model")
|
86 |
+
output_message = gr.Textbox(label="Training Status", interactive=False)
|
87 |
+
|
88 |
+
with gr.Column():
|
89 |
+
prompt_input = gr.Textbox(label="Enter prompt for text generation")
|
90 |
+
generate_button = gr.Button("Generate Text")
|
91 |
+
generated_output = gr.Textbox(label="Generated Text", interactive=False)
|
92 |
+
|
93 |
+
# Button actions
|
94 |
+
train_button.click(train_model, outputs=output_message)
|
95 |
+
generate_button.click(generate_text, inputs=prompt_input, outputs=generated_output)
|
96 |
+
|
97 |
+
# Launch the app
|
98 |
+
demo.launch()
|