Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,304 Bytes
d9528c3 c454519 d9528c3 e3f3865 d9528c3 7772d47 acbd592 e5c654a ae5c75e e5c654a e9eeeec d9528c3 3edef84 6de815a 7772d47 d9528c3 6de815a 7772d47 d9528c3 e6a1f9d d9528c3 89147ab 6fd0367 89147ab 6b14cc0 8c02929 91e5cf9 71f340b 91e5cf9 71f340b 91e5cf9 89147ab 70e4159 6de815a 6b8c210 70e4159 7772d47 bb374ba 7772d47 dd075f1 7772d47 d9528c3 6de815a d9528c3 bb9e162 9dce59b d9528c3 bb9e162 d9528c3 7772d47 d9528c3 7772d47 89f289d 7772d47 d9528c3 e9eeeec d9528c3 43c48cb c454519 d9528c3 7c57164 d9528c3 e9eeeec d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d2a3924 d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d9528c3 89f289d dd075f1 d9528c3 6c0aa6e 9ff7330 6c0aa6e e6a1f9d 6c0aa6e d414108 e6f3133 d414108 e6a1f9d 6c0aa6e dde1a6b 89147ab 6c0aa6e d9528c3 7772d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import spaces
import json
import subprocess
import time
import gradio as gr
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.llm_output_settings import LlmStructuredOutputSettings
from huggingface_hub import hf_hub_download
from duckduckgo_search import DDGS
from trafilatura import fetch_url, extract
model_selected = "Mistral-7B-Instruct-v0.3-Q6_K.gguf"
examples = [
["Latest uplifting news"],
["Latest news site:bloomberg.com"],
["Where I can find best hotel in Galapagos, Ecuador intitle:hotel"],
["filetype:pdf intitle:python"]
]
hf_hub_download(
repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF",
filename="Mistral-7B-Instruct-v0.3-Q6_K.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="bartowski/Meta-Llama-3-8B-Instruct-GGUF",
filename="Meta-Llama-3-8B-Instruct-Q6_K.gguf",
local_dir="./models"
)
css = """
.message-row {
justify-content: space-evenly !important;
}
.message-bubble-border {
border-radius: 6px !important;
}
.dark.message-bubble-border {
border-color: #343140 !important;
}
.dark.user {
background: #1e1c26 !important;
}
.dark.assistant.dark, .dark.pending.dark {
background: #0c0505 !important;
}
"""
PLACEHOLDER = """
<div class="message-bubble-border" style="display:flex; max-width: 600px; border-radius: 8px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); backdrop-filter: blur(10px);">
<figure style="margin: 0;">
<img src="https://huggingface.co/spaces/poscye/ddg-web-search-chat/resolve/main/logo.jpg" alt="Logo" style="width: 100%; height: 100%; border-radius: 8px;">
</figure>
<div style="padding: .5rem 1.5rem;">
<h2 style="text-align: left; font-size: 1.5rem; font-weight: 700; margin-bottom: 0.5rem;">llama-cpp-agent</h2>
<p style="text-align: left; font-size: 16px; line-height: 1.5; margin-bottom: 15px;">DDG Agent allows users to interact with it using natural language, making it easier for them to find the information they need. Offers a convenient and secure way for users to access web-based information.</p>
<div style="display: flex; justify-content: space-between; align-items: center;">
<div style="display: flex; flex-flow: column; justify-content: space-between;">
<span style="display: inline-flex; align-items: center; border-radius: 0.375rem; background-color: rgba(229, 70, 77, 0.1); padding: 0.1rem 0.75rem; font-size: 0.75rem; font-weight: 500; color: #f88181; margin-bottom: 2.5px;">
Mistral 7B Instruct v0.3
</span>
<span style="display: inline-flex; align-items: center; border-radius: 0.375rem; background-color: rgba(79, 70, 229, 0.1); padding: 0.1rem 0.75rem; font-size: 0.75rem; font-weight: 500; color: #60a5fa; margin-top: 2.5px;">
Meta Llama 3 8B Instruct
</span>
</div>
<div style="display: flex; justify-content: flex-end; align-items: center;">
<a href="https://discord.gg/sRMvWKrh" target="_blank" rel="noreferrer" style="padding: .5rem;">
<svg width="24" height="24" fill="currentColor" xmlns="http://www.w3.org/2000/svg" viewBox="0 5 30.67 23.25">
<title>Discord</title>
<path d="M26.0015 6.9529C24.0021 6.03845 21.8787 5.37198 19.6623 5C19.3833 5.48048 19.0733 6.13144 18.8563 6.64292C16.4989 6.30193 14.1585 6.30193 11.8336 6.64292C11.6166 6.13144 11.2911 5.48048 11.0276 5C8.79575 5.37198 6.67235 6.03845 4.6869 6.9529C0.672601 12.8736 -0.41235 18.6548 0.130124 24.3585C2.79599 26.2959 5.36889 27.4739 7.89682 28.2489C8.51679 27.4119 9.07477 26.5129 9.55525 25.5675C8.64079 25.2265 7.77283 24.808 6.93587 24.312C7.15286 24.1571 7.36986 23.9866 7.57135 23.8161C12.6241 26.1255 18.0969 26.1255 23.0876 23.8161C23.3046 23.9866 23.5061 24.1571 23.7231 24.312C22.8861 24.808 22.0182 25.2265 21.1037 25.5675C21.5842 26.5129 22.1422 27.4119 22.7621 28.2489C25.2885 27.4739 27.8769 26.2959 30.5288 24.3585C31.1952 17.7559 29.4733 12.0212 26.0015 6.9529ZM10.2527 20.8402C8.73376 20.8402 7.49382 19.4608 7.49382 17.7714C7.49382 16.082 8.70276 14.7025 10.2527 14.7025C11.7871 14.7025 13.0425 16.082 13.0115 17.7714C13.0115 19.4608 11.7871 20.8402 10.2527 20.8402ZM20.4373 20.8402C18.9183 20.8402 17.6768 19.4608 17.6768 17.7714C17.6768 16.082 18.8873 14.7025 20.4373 14.7025C21.9717 14.7025 23.2271 16.082 23.1961 17.7714C23.1961 19.4608 21.9872 20.8402 20.4373 20.8402Z"></path>
</svg>
</a>
<a href="https://github.com/Maximilian-Winter/llama-cpp-agent" target="_blank" rel="noreferrer" style="padding: .5rem;">
<svg width="24" height="24" fill="currentColor" viewBox="3 3 18 18">
<title>GitHub</title>
<path d="M12 3C7.0275 3 3 7.12937 3 12.2276C3 16.3109 5.57625 19.7597 9.15374 20.9824C9.60374 21.0631 9.77249 20.7863 9.77249 20.5441C9.77249 20.3249 9.76125 19.5982 9.76125 18.8254C7.5 19.2522 6.915 18.2602 6.735 17.7412C6.63375 17.4759 6.19499 16.6569 5.8125 16.4378C5.4975 16.2647 5.0475 15.838 5.80124 15.8264C6.51 15.8149 7.01625 16.4954 7.18499 16.7723C7.99499 18.1679 9.28875 17.7758 9.80625 17.5335C9.885 16.9337 10.1212 16.53 10.38 16.2993C8.3775 16.0687 6.285 15.2728 6.285 11.7432C6.285 10.7397 6.63375 9.9092 7.20749 9.26326C7.1175 9.03257 6.8025 8.08674 7.2975 6.81794C7.2975 6.81794 8.05125 6.57571 9.77249 7.76377C10.4925 7.55615 11.2575 7.45234 12.0225 7.45234C12.7875 7.45234 13.5525 7.55615 14.2725 7.76377C15.9937 6.56418 16.7475 6.81794 16.7475 6.81794C17.2424 8.08674 16.9275 9.03257 16.8375 9.26326C17.4113 9.9092 17.76 10.7281 17.76 11.7432C17.76 15.2843 15.6563 16.0687 13.6537 16.2993C13.98 16.5877 14.2613 17.1414 14.2613 18.0065C14.2613 19.2407 14.25 20.2326 14.25 20.5441C14.25 20.7863 14.4188 21.0746 14.8688 20.9824C16.6554 20.364 18.2079 19.1866 19.3078 17.6162C20.4077 16.0457 20.9995 14.1611 21 12.2276C21 7.12937 16.9725 3 12 3Z"></path>
</svg>
</a>
</div>
</div>
</div>
</div>
"""
def get_context_by_model(model_name):
model_context_limits = {
"Mistral-7B-Instruct-v0.3-Q6_K.gguf": 32768,
"Meta-Llama-3-8B-Instruct-Q6_K.gguf": 8192
}
return model_context_limits.get(model_name, None)
def get_website_content_from_url(url: str) -> str:
"""
Get website content from a URL using Selenium and BeautifulSoup for improved content extraction and filtering.
Args:
url (str): URL to get website content from.
Returns:
str: Extracted content including title, main text, and tables.
"""
try:
downloaded = fetch_url(url)
result = extract(downloaded, include_formatting=True, include_links=True, output_format='json', url=url)
if result:
result = json.loads(result)
return f'=========== Website Title: {result["title"]} ===========\n\n=========== Website URL: {url} ===========\n\n=========== Website Content ===========\n\n{result["raw_text"]}\n\n=========== Website Content End ===========\n\n'
else:
return ""
except Exception as e:
return f"An error occurred: {str(e)}"
def search_web(search_query: str):
"""
Search the web for information.
Args:
search_query (str): Search query to search for.
"""
results = DDGS().text(search_query, region='wt-wt', safesearch='off', timelimit='y', max_results=3)
result_string = ''
for res in results:
web_info = get_website_content_from_url(res['href'])
if web_info != "":
result_string += web_info
res = result_string.strip()
return "Based on the following results, answer the previous user query:\nResults:\n\n" + res[:get_context_by_model(model_selected)]
def get_messages_formatter_type(model_name):
from llama_cpp_agent import MessagesFormatterType
if "Meta" in model_name or "aya" in model_name:
return MessagesFormatterType.LLAMA_3
elif "Mistral" in model_name:
return MessagesFormatterType.MISTRAL
elif "Einstein-v6-7B" in model_name or "dolphin" in model_name:
return MessagesFormatterType.CHATML
elif "Phi" in model_name:
return MessagesFormatterType.PHI_3
else:
return MessagesFormatterType.CHATML
def write_message_to_user():
"""
Let you write a message to the user.
"""
return "Please write the message to the user."
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = get_messages_formatter_type(model)
model_selected = model
system_message += f" {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))}"
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_threads=40,
n_gpu_layers=81,
n_batch=1024,
n_ctx=get_context_by_model(model),
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
output_settings = LlmStructuredOutputSettings.from_functions(
[search_web, write_message_to_user])
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
result = agent.get_chat_response(message, llm_sampling_settings=settings, structured_output_settings=output_settings,
chat_history=messages,
print_output=False)
while True:
if result[0]["function"] == "write_message_to_user":
break
else:
result = agent.get_chat_response(result[0]["return_value"], role=Roles.tool, chat_history=messages,structured_output_settings=output_settings,
print_output=False)
stream = agent.get_chat_response(
result[0]["return_value"], role=Roles.tool, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown([
'Mistral-7B-Instruct-v0.3-Q6_K.gguf',
'Meta-Llama-3-8B-Instruct-Q6_K.gguf'
],
value="Mistral-7B-Instruct-v0.3-Q6_K.gguf",
label="Model"
),
gr.Textbox(value="You are a helpful assistant. Use additional available information you have access to when giving a response. Always give detailed and long responses. Format your response, well structured in markdown format.", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
theme=gr.themes.Soft(
primary_hue="orange",
secondary_hue="amber",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
body_background_fill_dark="#0c0505",
block_background_fill_dark="#0c0505",
block_border_width="1px",
block_title_background_fill_dark="#1b0f0f",
input_background_fill_dark="#140b0b",
button_secondary_background_fill_dark="#140b0b",
border_color_primary_dark="#1b0f0f",
background_fill_secondary_dark="#0c0505",
color_accent_soft_dark="transparent"
),
css=css,
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
examples = (examples),
description="Llama-cpp-agent: Chat Web Search DDG Agent",
chatbot=gr.Chatbot(scale=1, placeholder=PLACEHOLDER)
)
if __name__ == "__main__":
demo.launch()
|