Spaces:
Running
Running
ahnyeonchan2
commited on
Commit
•
7f858ba
1
Parent(s):
5233baa
initial
Browse files- README.md +8 -6
- mean_reciprocal_rank.py +24 -30
- requirements.txt +2 -1
- tests.py +6 -9
README.md
CHANGED
@@ -5,7 +5,7 @@ datasets:
|
|
5 |
tags:
|
6 |
- evaluate
|
7 |
- metric
|
8 |
-
description: "
|
9 |
sdk: gradio
|
10 |
sdk_version: 3.0.2
|
11 |
app_file: app.py
|
@@ -14,19 +14,21 @@ pinned: false
|
|
14 |
|
15 |
# Metric Card for Mean Reciprocal Rank
|
16 |
|
17 |
-
|
18 |
|
19 |
## Metric Description
|
20 |
-
|
|
|
|
|
21 |
|
22 |
## How to Use
|
23 |
-
|
|
|
24 |
|
25 |
-
*Provide simplest possible example for using the metric*
|
26 |
|
27 |
### Inputs
|
28 |
*List all input arguments in the format below*
|
29 |
-
- **input_field** *(
|
30 |
|
31 |
### Output Values
|
32 |
|
|
|
5 |
tags:
|
6 |
- evaluate
|
7 |
- metric
|
8 |
+
description: "a statistic measure for evaluating any process that produces a list of possible responses to a sample of queries, ordered by probability of correctness."
|
9 |
sdk: gradio
|
10 |
sdk_version: 3.0.2
|
11 |
app_file: app.py
|
|
|
14 |
|
15 |
# Metric Card for Mean Reciprocal Rank
|
16 |
|
17 |
+
a statistic measure for evaluating any process that produces a list of possible responses to a sample of queries, ordered by probability of correctness.
|
18 |
|
19 |
## Metric Description
|
20 |
+
The reciprocal rank of a query response is the multiplicative inverse of the rank of the first correct answer: 1 for first place, 1⁄2 for second place, 1⁄3 for third place and so on. The mean reciprocal rank is the average of the reciprocal ranks of results for a sample of queries Q
|
21 |
+
|
22 |
+
{\text{MRR}}={\frac {1}{|Q|}}\sum _{{i=1}}^{{|Q|}}{\frac {1}{{\text{rank}}_{i}}}.\!
|
23 |
|
24 |
## How to Use
|
25 |
+
Provide a list of gold ranks, where each item is rank of gold item of which the first rank starts with zero.
|
26 |
+
|
27 |
|
|
|
28 |
|
29 |
### Inputs
|
30 |
*List all input arguments in the format below*
|
31 |
+
- **input_field** *(List[int]): a list of integer where each integer is the rank of gold item
|
32 |
|
33 |
### Output Values
|
34 |
|
mean_reciprocal_rank.py
CHANGED
@@ -19,47 +19,39 @@ import datasets
|
|
19 |
|
20 |
# TODO: Add BibTeX citation
|
21 |
_CITATION = """\
|
22 |
-
@InProceedings{
|
23 |
-
title = {
|
24 |
-
authors={
|
25 |
-
year={
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
This
|
|
|
32 |
"""
|
33 |
|
34 |
|
35 |
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
-
Calculates how good are
|
38 |
Args:
|
39 |
-
predictions: list of
|
40 |
-
should be a string with tokens separated by spaces.
|
41 |
-
references: list of reference for each prediction. Each
|
42 |
-
reference should be a string with tokens separated by spaces.
|
43 |
Returns:
|
44 |
-
|
45 |
-
another_score: description of the second score,
|
46 |
Examples:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
>>> my_new_module = evaluate.load("my_new_module")
|
51 |
-
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
52 |
>>> print(results)
|
53 |
-
{'
|
54 |
"""
|
55 |
|
56 |
-
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
-
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
class MeanReciprocalRank(evaluate.Metric):
|
62 |
-
"""
|
63 |
|
64 |
def _info(self):
|
65 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
@@ -72,24 +64,26 @@ class MeanReciprocalRank(evaluate.Metric):
|
|
72 |
# This defines the format of each prediction and reference
|
73 |
features=datasets.Features({
|
74 |
'predictions': datasets.Value('int64'),
|
75 |
-
'references': datasets.Value('int64'),
|
76 |
}),
|
77 |
# Homepage of the module for documentation
|
78 |
-
homepage="
|
79 |
# Additional links to the codebase or references
|
80 |
-
codebase_urls=["
|
81 |
-
reference_urls=["
|
82 |
)
|
83 |
|
84 |
def _download_and_prepare(self, dl_manager):
|
85 |
"""Optional: download external resources useful to compute the scores"""
|
86 |
-
# TODO: Download external resources if needed
|
87 |
pass
|
88 |
|
89 |
-
def _compute(self, predictions
|
90 |
"""Returns the scores"""
|
91 |
# TODO: Compute the different scores of the module
|
92 |
-
|
|
|
|
|
|
|
|
|
93 |
return {
|
94 |
-
"
|
95 |
}
|
|
|
19 |
|
20 |
# TODO: Add BibTeX citation
|
21 |
_CITATION = """\
|
22 |
+
@InProceedings{posicube:module,
|
23 |
+
title = {Mean reciprocal mean},
|
24 |
+
authors={Pocicube, Inc.},
|
25 |
+
year={2022}
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
+
This module is designed to evaluate a system ranks the list of item.
|
32 |
+
mean reciprocal rank is a statistic measure for evaluating any process that produces a list of possible responses to a sample of queries, ordered by probability of correctness
|
33 |
"""
|
34 |
|
35 |
|
36 |
# TODO: Add description of the arguments of the module here
|
37 |
_KWARGS_DESCRIPTION = """
|
38 |
+
Calculates how good are ranks, using certain scores
|
39 |
Args:
|
40 |
+
predictions: list of predicted ranks of gold item, the first rank starts with 0
|
|
|
|
|
|
|
41 |
Returns:
|
42 |
+
mean reciprocal rank: mean of inverse of rank of gold item
|
|
|
43 |
Examples:
|
44 |
+
|
45 |
+
>>> mrr = evaluate.load("poscicube/mean_reciprocal_rank")
|
46 |
+
>>> results = mrr.compute(predictions=[0, 4])
|
|
|
|
|
47 |
>>> print(results)
|
48 |
+
{'mrr': 0.6}
|
49 |
"""
|
50 |
|
|
|
|
|
|
|
51 |
|
52 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
53 |
class MeanReciprocalRank(evaluate.Metric):
|
54 |
+
"""a statistic measure for evaluating any process that produces a list of possible responses to a sample of queries, ordered by probability of correctness."""
|
55 |
|
56 |
def _info(self):
|
57 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
|
|
64 |
# This defines the format of each prediction and reference
|
65 |
features=datasets.Features({
|
66 |
'predictions': datasets.Value('int64'),
|
|
|
67 |
}),
|
68 |
# Homepage of the module for documentation
|
69 |
+
homepage="https://huggingface.co/spaces/posicube/mean_reciprocal_rank",
|
70 |
# Additional links to the codebase or references
|
71 |
+
codebase_urls=["https://huggingface.co/spaces/posicube/mean_reciprocal_rank"],
|
72 |
+
reference_urls=["https://en.wikipedia.org/wiki/Mean_reciprocal_rank"]
|
73 |
)
|
74 |
|
75 |
def _download_and_prepare(self, dl_manager):
|
76 |
"""Optional: download external resources useful to compute the scores"""
|
|
|
77 |
pass
|
78 |
|
79 |
+
def _compute(self, predictions):
|
80 |
"""Returns the scores"""
|
81 |
# TODO: Compute the different scores of the module
|
82 |
+
q = len(predictions)
|
83 |
+
sum_rr = 0.0
|
84 |
+
for p in predictions:
|
85 |
+
sum_rr += 1/(p+1)
|
86 |
+
mrr = sum_rr / q
|
87 |
return {
|
88 |
+
"mrr": mrr
|
89 |
}
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
git+https://github.com/huggingface/evaluate@main
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@main
|
2 |
+
datasets
|
tests.py
CHANGED
@@ -1,17 +1,14 @@
|
|
1 |
test_cases = [
|
2 |
{
|
3 |
-
"predictions": [0, 0],
|
4 |
-
"
|
5 |
-
"result": {"metric_score": 0}
|
6 |
},
|
7 |
{
|
8 |
-
"predictions": [
|
9 |
-
"
|
10 |
-
"result": {"metric_score": 1}
|
11 |
},
|
12 |
{
|
13 |
-
"predictions": [
|
14 |
-
"
|
15 |
-
"result": {"metric_score": 0.5}
|
16 |
}
|
17 |
]
|
|
|
1 |
test_cases = [
|
2 |
{
|
3 |
+
"predictions": [0, 0, 2],
|
4 |
+
"result": {"mrr": 0.7777777777777778}
|
|
|
5 |
},
|
6 |
{
|
7 |
+
"predictions": [0, 0],
|
8 |
+
"result": {"mrr": 1}
|
|
|
9 |
},
|
10 |
{
|
11 |
+
"predictions": [0, 4],
|
12 |
+
"result": {"mrr": 0.6}
|
|
|
13 |
}
|
14 |
]
|