File size: 104,643 Bytes
05eec1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "hUCaGdAj9-9F"
   },
   "source": [
    "---\n",
    "title: \"Advanced RAG\"\n",
    "---\n",
    "_Authored by: [Aymeric Roucher](https://huggingface.co/m-ric)_"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "DKv51c_h9-9H"
   },
   "source": [
    "This notebook demonstrates how you can build an advanced RAG (Retrieval Augmented Generation) for answering a user's question about a specific knowledge base (here, the HuggingFace documentation), using LangChain.\n",
    "\n",
    "For an introduction to RAG, you can check [this other cookbook](rag_zephyr_langchain)!\n",
    "\n",
    "RAG systems are complex, with many moving parts: here a RAG diagram, where we noted in blue all possibilities for system enhancement:\n",
    "\n",
    "<img src=\"https://huggingface.co/datasets/huggingface/cookbook-images/resolve/main/RAG_workflow.png\" height=\"700\">\n",
    "\n",
    "> πŸ’‘ As you can see, there are many steps to tune in this architecture: tuning the system properly will yield significant performance gains.\n",
    "\n",
    "In this notebook, we will take a look into many of these blue notes to see how to tune your RAG system and get the best performance.\n",
    "\n",
    "__Let's dig into the model building!__ First, we install the required model dependancies."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "NSX0p0rV9-9I"
   },
   "outputs": [],
   "source": [
    "!pip install -q torch transformers transformers accelerate bitsandbytes langchain sentence-transformers faiss-gpu openpyxl pacmap"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "8_Uyukt39-9J"
   },
   "outputs": [],
   "source": [
    "%reload_ext dotenv\n",
    "%dotenv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "eoujYMwW9-9J"
   },
   "outputs": [],
   "source": [
    "from tqdm.notebook import tqdm\n",
    "import pandas as pd\n",
    "from typing import Optional, List, Tuple\n",
    "from datasets import Dataset\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "pd.set_option(\n",
    "    \"display.max_colwidth\", None\n",
    ")  # this will be helpful when visualizing retriever outputs"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Kr6rN10U9-9J"
   },
   "source": [
    "### Load your knowledge base"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "qZLVIEVW9-9J"
   },
   "outputs": [],
   "source": [
    "import datasets\n",
    "\n",
    "ds = datasets.load_dataset(\"m-ric/huggingface_doc\", split=\"train\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "836Q7vF49-9K"
   },
   "outputs": [],
   "source": [
    "from langchain.docstore.document import Document as LangchainDocument\n",
    "\n",
    "RAW_KNOWLEDGE_BASE = [\n",
    "    LangchainDocument(page_content=doc[\"text\"], metadata={\"source\": doc[\"source\"]})\n",
    "    for doc in tqdm(ds)\n",
    "]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "0_LxjD5h9-9K"
   },
   "source": [
    "# 1. Retriever - embeddings πŸ—‚οΈ\n",
    "The __retriever acts like an internal search engine__: given the user query, it returns a few relevant snippets from your knowledge base.\n",
    "\n",
    "These snippets will then be fed to the Reader Model to help it generate its answer.\n",
    "\n",
    "So __our objective here is, given a user question, to find the most snippets from our knowledge base to answer that question.__\n",
    "\n",
    "This is a wide objective, it leaves open some questions. How many snippets should we retrieve? This parameter will be named `top_k`.\n",
    "\n",
    "How long should these snippets be? This is called the `chunk size`. There's no one-size-fits-all answers, but here are a few elements:\n",
    "- πŸ”€ Your `chunk size` is allowed to vary from one snippet to the other.\n",
    "- Since there will always be some noise in your retrieval, increasing the `top_k` increases the chance to get relevant elements in your retrieved snippets. 🎯 Shooting more arrows increases your probability to hit your target.\n",
    "- Meanwhile, the summed length of your retrieved documents should not be too high: for instance, for most current models 16k tokens will probably drown your Reader model in information due to [Lost-in-the-middle phenomenon](https://huggingface.co/papers/2307.03172). 🎯 Give your reader model only the most relevant insights, not a huge pile of books!\n",
    "\n",
    "\n",
    "> In this notebook, we use Langchain library since __it offers a huge variety of options for vector databases and allows us to keep document metadata throughout the processing__."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "-uS6Mv8O9-9L"
   },
   "source": [
    "### 1.1 Split the documents into chunks\n",
    "\n",
    "- In this part, __we split the documents from our knowledge base into smaller chunks__ which will be the snippets on which the reader LLM will base its answer.\n",
    "- The goal is to prepare a collection of **semantically relevant snippets**. So their size should be adapted to precise ideas: too small will truncate ideas, too large will dilute them.\n",
    "\n",
    "πŸ’‘ _Many options exist for text splitting: splitting on words, on sentence boundaries, recursive chunking that processes documents in a tree-like way to preserve structure information... To learn more about chunking, I recommend you read [this great notebook](https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/5_Levels_Of_Text_Splitting.ipynb) by Greg Kamradt._\n",
    "\n",
    "\n",
    "- **Recursive chunking** breaks down the text into smaller parts step by step using a given list of separators sorted from the most important to the least important separator. If the first split doesn't give the right size or shape chunks, the method repeats itself on the new chunks using a different separator. For instance with the list of separators `[\"\\n\\n\", \"\\n\", \".\", \"\"]`:\n",
    "    - The method will first break down the document wherever there is a double line break `\"\\n\\n\"`.\n",
    "    - Resulting documents will be split again on simple line breaks `\"\\n\"`, then on sentence ends `\".\"`.\n",
    "    - And finally, if some chunks are still too big, they will be split whenever they overflow the maximum size.\n",
    "\n",
    "- With this method, the global structure is well preserved, at the expense of getting slight variations in chunk size.\n",
    "\n",
    "> [This space](https://huggingface.co/spaces/A-Roucher/chunk_visualizer) lets you visualize how different splitting options affect the chunks you get.\n",
    "\n",
    "πŸ”¬ Let's experiment a bit with chunk sizes, beginning with an arbitrary size, and see how splits work. We use Langchain's implementation of recursive chunking with `RecursiveCharacterTextSplitter`.\n",
    "- Parameter `chunk_size` controls the length of individual chunks: this length is counted by default as the number of characters in the chunk.\n",
    "- Parameter `chunk_overlap` lets adjacent chunks get a bit of overlap on each other. This reduces the probability that an idea could be cut in half by the split between two adjacent chunks. We ~arbitrarily set this to 1/10th of the chunk size, you could try different values!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "M4m6TwDJ9-9L"
   },
   "outputs": [],
   "source": [
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "\n",
    "# We use a hierarchical list of separators specifically tailored for splitting Markdown documents\n",
    "# This list is taken from LangChain's MarkdownTextSplitter class.\n",
    "MARKDOWN_SEPARATORS = [\n",
    "    \"\\n#{1,6} \",\n",
    "    \"```\\n\",\n",
    "    \"\\n\\\\*\\\\*\\\\*+\\n\",\n",
    "    \"\\n---+\\n\",\n",
    "    \"\\n___+\\n\",\n",
    "    \"\\n\\n\",\n",
    "    \"\\n\",\n",
    "    \" \",\n",
    "    \"\",\n",
    "]\n",
    "\n",
    "text_splitter = RecursiveCharacterTextSplitter(\n",
    "    chunk_size=1000,  # the maximum number of characters in a chunk: we selected this value arbitrarily\n",
    "    chunk_overlap=100,  # the number of characters to overlap between chunks\n",
    "    add_start_index=True,  # If `True`, includes chunk's start index in metadata\n",
    "    strip_whitespace=True,  # If `True`, strips whitespace from the start and end of every document\n",
    "    separators=MARKDOWN_SEPARATORS,\n",
    ")\n",
    "\n",
    "docs_processed = []\n",
    "for doc in RAW_KNOWLEDGE_BASE:\n",
    "    docs_processed += text_splitter.split_documents([doc])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "d5jJUMgb9-9M"
   },
   "source": [
    "We also have to keep in mind that when embedding documents, we will use an embedding model that has accepts a certain maximum sequence length `max_seq_length`.\n",
    "\n",
    "So we should make sure that our chunk sizes are below this limit, because any longer chunk will be truncated before processing, thus losing relevancy."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "referenced_widgets": [
      "ae043feeb0914c879e2a9008b413d952"
     ]
    },
    "id": "B4hoki349-9M",
    "outputId": "64f92a61-7839-476d-f456-7eefde04c20b"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model's maximum sequence length: 512\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ae043feeb0914c879e2a9008b413d952",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/31085 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo4AAAGzCAYAAAChApYOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUuElEQVR4nO3deVwV9eL/8TfIrgKiCaKoXC33LSzFvURwTcsl09JM85Z60ywtK82lcitzTfN20xa9llbmtVJxKTXJLXFLzcqyNKBExBURPr8/+p35egR0UDhAvp6Ph486n/mcz3zmM3Nm3mdmzuBmjDECAAAArsG9oDsAAACAooHgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALAl34Pj2LFj5ebmlt+zkSS1atVKrVq1sl5/+eWXcnNz07Jly1wy/4cffliVK1d2ybyu15kzZzRgwACFhITIzc1Nw4YNy3Ubbm5uGjt2bJ737WZUuXJlPfzwwwXdjWt6+OGHVaJEiXydh6u2K1ftF1y9/7lRP//8s9zc3LRw4cI8a3PhwoVyc3PTzz//nGdt2lW5cmV17NjR5fO9UWfOnFHZsmW1aNEiq8yVx9G/u7w4Btrl2P537NiRb/O4Xj179lSPHj2u6725Co6OQXD88/HxUWhoqGJiYjRz5kydPn36ujpxpePHj2vs2LGKj4/Pk/byUmHumx2vvPKKFi5cqMcff1zvvfeeHnrooYLu0t/K4sWLNX369ILuxnU5d+6cxo4dqy+//LKgu5InivK6wM1rxowZKlmypHr27FnQXSlQr7zyipYvX54v7do9BuZXHwqDZ555Rh999JF2796d6/de1xnH8ePH67333tPcuXP1r3/9S5I0bNgw1alTR3v27HGq+8ILL+j8+fO5av/48eMaN25crsPZmjVrtGbNmly9J7eu1rd///vfOnToUL7O/0atX79ejRs31osvvqgHH3xQERERBd2lv5WiHFbOnTuncePGFVhwPH/+vF544YU8a68orwvcnNLT0zVjxgwNGDBAxYoVs8qv5zha1OVXaMvNMfDvHBwbNGighg0b6rXXXsv1e68rOLZr104PPvig+vXrp1GjRmn16tVau3atkpKSdM899zht4B4eHvLx8bme2dh27tw5SZKXl5e8vLzydV5X4+npKW9v7wKbvx1JSUkKDAws6G4AWfj4+MjDw6OguwEUmJUrV+qPP/7IcgnRFcfRmwXHwP/To0cPffzxxzpz5kyu3pdn9zjefffdGj16tH755Re9//77Vnl292bExsaqWbNmCgwMVIkSJVStWjU999xzkv66L+iOO+6QJPXr18+6LO6476ZVq1aqXbu2du7cqRYtWsjPz89675X3ODpkZGToueeeU0hIiIoXL6577rlHv/76q1OdnO41u7zNa/Utu3scz549q6eeekphYWHy9vZWtWrV9Oqrr8oY41TPzc1NQ4YM0fLly1W7dm15e3urVq1aWrVqVfYDfoWkpCT1799fwcHB8vHxUb169fTOO+9Y0x33Wx05ckSfffaZ1fer3XuUlpamJ598UrfccotKliype+65R7/99lu2dXft2qV27drJ399fJUqUUOvWrfXNN99kqZeSkqInn3xSlStXlre3typUqKA+ffrozz//lJTzPVGO/l9+NsyxLezZs0ctW7aUn5+fqlatat1T9tVXX6lRo0by9fVVtWrVtHbt2iz9OXbsmB555BEFBwdbY/72229nO+8PP/xQL7/8sipUqCAfHx+1bt1aP/zwg1N/PvvsM/3yyy/W+F7PPa8pKSkaNmyYtc1UrVpVkydPVmZmplXHcT/aq6++qvnz56tKlSry9vbWHXfcoe3bt2dpc+nSpapZs6Z8fHxUu3ZtffLJJ07b688//6xbbrlFkjRu3Dir/1fec3js2DF16dJFJUqU0C233KKnn35aGRkZTnWWLFmiiIgIlSxZUv7+/qpTp45mzJhxzeW+cn6OfccPP/yghx9+WIGBgQoICFC/fv2sL4s5sbMuMjMzr7o+HbZu3aq2bdsqICBAfn5+atmypb7++utrLk920tLS1LFjRwUEBGjLli25Xs5Lly5pwoQJ1vquXLmynnvuOaWlpVl1hg8frtKlSzvtY/71r3/Jzc1NM2fOtMoSExPl5uamuXPnXrXPBw8eVLdu3RQUFCQfHx81bNhQK1asyFJv//79uvvuu+Xr66sKFSropZdectpmHTIzMzV27FiFhobKz89Pd911l7777rts98F2PgvXsmbNGtWvX18+Pj6qWbOmPv74Y6fpycnJevrpp1WnTh2VKFFC/v7+ateuXbaX8GbNmqVatWrJz89PpUqVUsOGDbV48WKnOnb2KTlZvny5KleurCpVqjiVZ3ccvdFjxoULFzR27Fjddttt8vHxUbly5XTffffpxx9/tOrYOX5d7d7Y6/1Mu7m56ezZs3rnnXesz++17gXP62Pgtfpg95h3pZMnT+rOO+9UhQoVrCuUaWlpevHFF1W1alV5e3srLCxMI0eOdPpcO/pkZ52fPn1aw4YNs46zZcuWVZs2bfTtt9861WvTpo3Onj2r2NjYa/b7cnn69f6hhx7Sc889pzVr1ujRRx/Nts7+/fvVsWNH1a1bV+PHj5e3t7d++OEHa0dco0YNjR8/XmPGjNHAgQPVvHlzSVKTJk2sNk6cOKF27dqpZ8+eevDBBxUcHHzVfr388styc3PTM888o6SkJE2fPl1RUVGKj4+Xr6+v7eWz07fLGWN0zz33aMOGDerfv7/q16+v1atXa8SIETp27Jhef/11p/qbN2/Wxx9/rEGDBqlkyZKaOXOmunbtqqNHj6p06dI59uv8+fNq1aqVfvjhBw0ZMkTh4eFaunSpHn74YaWkpGjo0KGqUaOG3nvvPT355JOqUKGCnnrqKUmywkJ2BgwYoPfff1+9evVSkyZNtH79enXo0CFLvf3796t58+by9/fXyJEj5enpqTfffFOtWrWywpv0103JzZs314EDB/TII4/o9ttv159//qkVK1bot99+U5kyZa6+ArJx8uRJdezYUT179lT37t01d+5c9ezZU4sWLdKwYcP02GOPqVevXpo6daq6deumX3/9VSVLlpT014GzcePG1ofxlltu0RdffKH+/fsrNTU1y03TkyZNkru7u55++mmdOnVKU6ZMUe/evbV161ZJ0vPPP69Tp07pt99+s9Ztbn9Qcu7cObVs2VLHjh3TP//5T1WsWFFbtmzRqFGj9Pvvv2e59Lp48WKdPn1a//znP+Xm5qYpU6bovvvu008//SRPT09J0meffab7779fderU0cSJE3Xy5En1799f5cuXt9q55ZZbNHfuXD3++OO69957dd9990mS6tata9XJyMhQTEyMGjVqpFdffVVr167Va6+9pipVqujxxx+X9NeXwgceeECtW7fW5MmTJUkHDhzQ119/raFDh+ZqLBx69Oih8PBwTZw4Ud9++63eeustlS1b1mo/O3bWxbXWp/TXZa127dopIiJCL774otzd3bVgwQLdfffd2rRpk+68807by3H+/Hl17txZO3bs0Nq1a60voblZzgEDBuidd95Rt27d9NRTT2nr1q2aOHGiDhw4oE8++USS1Lx5c73++uvav3+/ateuLUnatGmT3N3dtWnTJj3xxBNWmSS1aNEixz7v379fTZs2Vfny5fXss8+qePHi+vDDD9WlSxd99NFHuvfeeyVJCQkJuuuuu3Tp0iWr3vz587Pdv44aNUpTpkxRp06dFBMTo927dysmJkYXLlxwqpfbz0J2Dh8+rPvvv1+PPfaY+vbtqwULFqh79+5atWqV2rRpI0n66aeftHz5cnXv3l3h4eFKTEzUm2++qZYtW+q7775TaGiopL9uRXriiSfUrVs3DR06VBcuXNCePXu0detW9erVS1Lu9ylX2rJli26//fZrLpfD9R4zMjIy1LFjR61bt049e/bU0KFDdfr0acXGxmrfvn2qUqVKro9fuXGtbf29997TgAEDdOedd2rgwIGSlCVMXy4/joFX64PdY96V/vzzT7Vp00bJycn66quvVKVKFWVmZuqee+7R5s2bNXDgQNWoUUN79+7V66+/ru+//z7LpXI76/yxxx7TsmXLNGTIENWsWVMnTpzQ5s2bdeDAAaftq2bNmvL19dXXX39tfZZtMbmwYMECI8ls3749xzoBAQGmQYMG1usXX3zRXD6b119/3Ugyf/zxR45tbN++3UgyCxYsyDKtZcuWRpKZN29ettNatmxpvd6wYYORZMqXL29SU1Ot8g8//NBIMjNmzLDKKlWqZPr27XvNNq/Wt759+5pKlSpZr5cvX24kmZdeesmpXrdu3Yybm5v54YcfrDJJxsvLy6ls9+7dRpKZNWtWlnldbvr06UaSef/9962yixcvmsjISFOiRAmnZa9UqZLp0KHDVdszxpj4+HgjyQwaNMipvFevXkaSefHFF62yLl26GC8vL/Pjjz9aZcePHzclS5Y0LVq0sMrGjBljJJmPP/44y/wyMzONMf+3jR05csRpumNdbtiwwSpzbAuLFy+2yg4ePGgkGXd3d/PNN99Y5atXr86y3vr372/KlStn/vzzT6d59ezZ0wQEBJhz5845zbtGjRomLS3Nqjdjxgwjyezdu9cq69Chg9M2cC1XbncTJkwwxYsXN99//71TvWeffdYUK1bMHD161BhjzJEjR4wkU7p0aZOcnGzV+/TTT40k87///c8qq1OnjqlQoYI5ffq0Vfbll18aSU59/eOPP7KsW4e+ffsaSWb8+PFO5Q0aNDARERHW66FDhxp/f39z6dIl22PgcOW8HfuORx55xKnevffea0qXLn3N9nJaF3bXZ2Zmprn11ltNTEyMtX0aY8y5c+dMeHi4adOmzVXn75jP0qVLzenTp03Lli1NmTJlzK5du5zq2V1Ox2dywIABTvWefvppI8msX7/eGGNMUlKSkWTeeOMNY4wxKSkpxt3d3XTv3t0EBwdb73viiSdMUFCQtWyOberyz0jr1q1NnTp1zIULF6yyzMxM06RJE3PrrbdaZcOGDTOSzNatW62ypKQkExAQ4PR5TkhIMB4eHqZLly5OyzB27Fgj6bo+CzmpVKmSkWQ++ugjq+zUqVOmXLlyTseoCxcumIyMDKf3HjlyxHh7eztt7507dza1atW66jzt7lOyk56ebtzc3MxTTz2VZdqVx1FjbuyY8fbbbxtJZtq0aVmmObYHu8ev7Laby/t4vZ/p4sWLZ3tMzk5+HAOv1ge7x7zLM9Pvv/9uatWqZf7xj3+Yn3/+2arz3nvvGXd3d7Np0yanecybN89IMl9//bVVZnedBwQEmMGDB9taxttuu820a9fOVl2HPH8cT4kSJa7662rHvQWffvppri43XM7b21v9+vWzXb9Pnz7WWSZJ6tatm8qVK6fPP//8uuZv1+eff65ixYpZ3/AdnnrqKRlj9MUXXziVR0VFOX2rqlu3rvz9/fXTTz9dcz4hISF64IEHrDJPT0898cQTOnPmjL766qvr6rukLH2/8htzRkaG1qxZoy5duugf//iHVV6uXDn16tVLmzdvVmpqqiTpo48+Ur169bL9ZnO9j5ooUaKE068Pq1WrpsDAQNWoUcPpW5/j/x1jaYzRRx99pE6dOskYoz///NP6FxMTo1OnTmU5rd+vXz+ne2gdZ5yvtX5yY+nSpWrevLlKlSrl1KeoqChlZGRo48aNTvXvv/9+lSpVKsc+HT9+XHv37lWfPn2czri1bNlSderUyXX/HnvsMafXzZs3d1r+wMDA67r0kdt5njhxwtqurte11md8fLwOHz6sXr166cSJE9a6OHv2rFq3bq2NGzfa2oedOnVK0dHROnjwoL788kvVr18/23rXWk7HZ3L48OFO9RxnTj777DNJf51BqV69urWtfP311ypWrJhGjBihxMREHT58WNJfZxybNWuW42cvOTlZ69evV48ePXT69Glr+U+cOKGYmBgdPnxYx44ds/rWuHFjpzOwt9xyi3r37u3U5rp163Tp0iUNGjTIqdzxI8vL5fazkJ3Q0FCn/Y2/v7/69OmjXbt2KSEhQdJfxxN3978OhRkZGTpx4oR1C9Xl+4DAwED99ttv2d4KIl3fPuVyycnJMsY4fZ6v5XqPGR999JHKlCmT7bg7tofcHr9yI68/0/lxDMxJbo55Dr/99ptatmyp9PR0bdy4UZUqVbKmLV26VDVq1FD16tWdtpm7775bkrRhwwantuys88DAQG3dulXHjx+/5vI4Pl+5ked3ojueQZWT+++/X2+99ZYGDBigZ599Vq1bt9Z9992nbt26WR/eaylfvnyufgRz6623Or12c3NT1apV8/3ZYr/88otCQ0OdQqv01yVvx/TLVaxYMUsbpUqV0smTJ685n1tvvTXL+OU0H7t9d3d3z3J5oFq1ak6v//jjD507dy5LuWP+mZmZ+vXXX1WrVi39+OOP6tq1a677cjUVKlTIcuALCAhQWFhYljJJ1lj+8ccfSklJ0fz58zV//vxs205KSnJ6feX6cezgr7V+cuPw4cPas2dPjpdPctsnx7qvWrVqlraqVq161QPZlXx8fLL068rtc9CgQfrwww/Vrl07lS9fXtHR0erRo4fatm1rez5Xutoy+vv750u7kqyA1bdv3xzbOHXq1DUP9MOGDdOFCxe0a9cu1apV67r64+/vb30mr1yXISEhCgwMdPqcN2/e3AqamzZtUsOGDdWwYUMFBQVp06ZNCg4O1u7du61LrNn54YcfZIzR6NGjNXr06GzrJCUlqXz58vrll1+yvTx35X4hp+0xKCgoyzjm9rOQnapVq2bZP9x2222S/ro3LyQkRJmZmZoxY4beeOMNHTlyxOme3csv9z7zzDNau3at7rzzTlWtWlXR0dHq1auXmjZtKun69inZMVfc/34113vM+PHHH1WtWrWr/hgtt8ev3Mjrz3R+HANzkptjnsNDDz0kDw8PHThwQCEhIU7vOXz4sA4cOHDd+3wp6zqfMmWK+vbtq7CwMEVERKh9+/bq06ePU9B1MMbk+sRNngbH3377TadOncr2IOXg6+urjRs3asOGDfrss8+0atUqffDBB7r77ru1Zs0ap0cQXK2NvJbTwGVkZNjqU17IaT652ZEUdVdbD9nJacyuNZaOM0UPPvhgjsHg8vv77LSZFzIzM9WmTRuNHDky2+mOg54r+3SteV2ubNmyio+P1+rVq/XFF1/oiy++0IIFC9SnTx+nG9XzYr43uox2t5GpU6fmeJbQzj2snTt31pIlSzRp0iS9++67OX5BtrucdnbyzZo107///W/99NNP2rRpk5o3by43Nzc1a9ZMmzZtUmhoqDIzM62zrNlxLP/TTz+tmJiYbOtcbV9/o3L7Wbher7zyikaPHq1HHnlEEyZMUFBQkNzd3TVs2DCnM8o1atTQoUOHtHLlSq1atUofffSR3njjDY0ZM0bjxo27rn3K5YKCguTm5parL6KF4ZiR2322VDj67Ur33Xef3n33Xc2YMUMTJ050mpaZmak6depo2rRp2b73ypMgdsauR48eat68uT755BOtWbNGU6dO1eTJk/Xxxx+rXbt2Tu87efJklpNr15KnwfG9996TpBx3Mg7u7u5q3bq1WrdurWnTpumVV17R888/rw0bNigqKirPn5DvOHPgYIzRDz/84PQhLlWqlFJSUrK895dffnFK6bnpW6VKlbR27VqdPn3a6VvbwYMHrel5oVKlStqzZ48yMzOdDko3Mp9KlSopMzPT+mbqcOVzKm+55Rb5+fll+/zKgwcPyt3d3drwq1Spon379l11vo5vnleui7z8xijJ+qV4RkaGoqKi8qzdG912q1SpojNnzuRZnxzrPrtfC19ZllefOy8vL3Xq1EmdOnVSZmamBg0apDfffFOjR4/O16BxpbxYF9JflzdvZH106dJF0dHRevjhh1WyZMlr/oo5J47P5OHDh60zKdJfP8hISUlx+pw7AmFsbKy2b9+uZ599VtJfP4SZO3euQkNDVbx48as+w86x3/P09Lzm8leqVCnLflbKur+4fHsMDw+3yk+cOJElMOXFZ8Fx1vTybeH777+XJOtX9suWLdNdd92l//znP07vTUlJyfKDveLFi+v+++/X/fffr4sXL+q+++7Tyy+/rFGjRt3wPsXDw0NVqlTRkSNHcv3e3KpSpYq2bt2q9PR060d0V7J7/MqvfXZuj7V5fQzMqQ+5OeY5/Otf/1LVqlU1ZswYBQQEWJ9H6a91sXv3brVu3TpPs0+5cuU0aNAgDRo0SElJSbr99tv18ssvOwXHS5cu6ddff9U999yTq7bz7B7H9evXa8KECQoPD89yX8vlkpOTs5Q5vs07fnpevHhxSVk3xOv17rvvOt13uWzZMv3+++9OA1ilShV98803unjxolW2cuXKLI/tyU3f2rdvr4yMDM2ePdup/PXXX5ebm1uW5H+92rdvr4SEBH3wwQdW2aVLlzRr1iyVKFFCLVu2zHWbjr5d/vgOSVl+yVisWDFFR0fr008/dbr0n5iYqMWLF6tZs2bWpYeuXbtq9+7d1q8/L+f4tuQ4WF9+/1JGRkaOl36uV7FixdS1a1d99NFH2YbZP/7447raLV68uE6dOnXd/erRo4fi4uK0evXqLNNSUlJ06dKlXLUXGhqq2rVr691333V6VtdXX32lvXv3OtX18/Oz5nO9Tpw44fTa3d3d+oJ25aMl8tuNrouIiAhVqVJFr776arbPOcvNNtKnTx/NnDlT8+bN0zPPPHNd/Wnfvr2krJ9Bx5mKy594EB4ervLly+v1119Xenq6dTm1efPm+vHHH7Vs2TI1btz4qpcqy5Ytq1atWunNN9/U77//nmX65cvfvn17ffPNN9q2bZvT9Mv/bJ4ktW7dWh4eHlnC85X7SClvPgvHjx932t+kpqbq3XffVf369a1LhsWKFctypmvp0qXW/ZsOV27bXl5eqlmzpowxSk9Pz5N9SmRkpEv+PF3Xrl31559/ZjvujrGwe/zy9/dXmTJlstxz+sYbb9xQH4sXL257X5Qfx8Cc+pCbY97lRo8eraefflqjRo1y2v579OihY8eO6d///neW95w/f15nz57NVZ8zMjKy7PfKli2r0NDQLPvg7777ThcuXMjxyTA5ua4zjl988YUOHjyoS5cuKTExUevXr1dsbKwqVaqkFStWXPVBpePHj9fGjRvVoUMHVapUSUlJSXrjjTdUoUIFNWvWTNJf4SEwMFDz5s1TyZIlVbx4cTVq1MjpG2puBAUFqVmzZurXr58SExM1ffp0Va1a1emRQQMGDNCyZcvUtm1b9ejRQz/++KPef//9LPf45aZvnTp10l133aXnn39eP//8s+rVq6c1a9bo008/1bBhw676eIHcGDhwoN588009/PDD2rlzpypXrqxly5bp66+/1vTp07Pco2JH/fr19cADD+iNN97QqVOn1KRJE61bty7bM1cvvfSS9WzOQYMGycPDQ2+++abS0tI0ZcoUq96IESO0bNkyde/eXY888ogiIiKUnJysFStWaN68eapXr55q1aqlxo0ba9SoUUpOTlZQUJCWLFmS68Bkx6RJk7RhwwY1atRIjz76qGrWrKnk5GR9++23Wrt2bbZfcq4lIiJCH3zwgYYPH6477rhDJUqUUKdOnWy/f8SIEVqxYoU6duyohx9+WBERETp79qz27t2rZcuW6eeff871Y4teeeUVde7cWU2bNlW/fv108uRJzZ49W7Vr13YKRL6+vqpZs6Y++OAD3XbbbQoKClLt2rWtR7rYMWDAACUnJ+vuu+9WhQoV9Msvv2jWrFmqX7++01kyV7jRdeHu7q633npL7dq1U61atdSvXz+VL19ex44d04YNG+Tv76///e9/ttsbMmSIUlNT9fzzzysgIMB6/qxd9erVU9++fTV//nylpKSoZcuW2rZtm9555x116dJFd911l1P95s2ba8mSJapTp451Vuj2229X8eLF9f3331/1/kaHOXPmqFmzZqpTp44effRR/eMf/1BiYqLi4uL022+/Wc86HDlypN577z21bdtWQ4cOtR7H4zgT5BAcHKyhQ4fqtdde0z333KO2bdtq9+7d+uKLL1SmTBmnMy558Vm47bbb1L9/f23fvl3BwcF6++23lZiYqAULFlh1OnbsqPHjx6tfv35q0qSJ9u7dq0WLFmW5Hyw6OlohISFq2rSpgoODdeDAAc2ePVsdOnSw9rE3uk/p3Lmz3nvvPX3//fd5dik+O3369NG7776r4cOHa9u2bWrevLnOnj2rtWvXatCgQercuXOujl8DBgzQpEmTNGDAADVs2FAbN260zuxer4iICK1du1bTpk1TaGiowsPDc3zMTX4cA6/WB7vHvCtNnTpVp06d0uDBg1WyZEk9+OCDeuihh/Thhx/qscce04YNG9S0aVNlZGTo4MGD+vDDD7V69Wo1bNjQdp9Pnz6tChUqqFu3bqpXr55KlCihtWvXavv27Vn+SkxsbKz8/PysR1PZlpufYDt+Wu745+XlZUJCQkybNm3MjBkznH7y7nDlYwTWrVtnOnfubEJDQ42Xl5cJDQ01DzzwQJZHLnz66aemZs2axsPDw+mn/i1btszxkQg5PY7nv//9rxk1apQpW7as8fX1NR06dDC//PJLlve/9tprpnz58sbb29s0bdrU7NixI0ubV+vblY/jMcaY06dPmyeffNKEhoYaT09Pc+utt5qpU6c6Pd7DmL9+Zp/dz+dzekzQlRITE02/fv1MmTJljJeXl6lTp062j0fIzaMIzp8/b5544glTunRpU7x4cdOpUyfz66+/ZvvIlm+//dbExMSYEiVKGD8/P3PXXXeZLVu2ZGnzxIkTZsiQIaZ8+fLGy8vLVKhQwfTt29fp8RU//vijiYqKMt7e3iY4ONg899xzJjY2NtvH8WS3LeS0jNmNcWJiohk8eLAJCwsznp6eJiQkxLRu3drMnz/fqnP5Y1Uul91jKM6cOWN69eplAgMDszzuJjvZrd/Tp0+bUaNGmapVqxovLy9TpkwZ06RJE/Pqq6+aixcvOs176tSp2S7nletnyZIlpnr16sbb29vUrl3brFixwnTt2tVUr17dqd6WLVtMRESE8fLycmqnb9++pnjx4lnmdeXne9myZSY6OtqULVvWeHl5mYoVK5p//vOf5vfff7/qOGTXb0fbVz66K6dHNl0pp3WRm/VpjDG7du0y9913nyldurTx9vY2lSpVMj169DDr1q276vxzms/IkSONJDN79uxcL2d6eroZN26cCQ8PN56eniYsLMyMGjXK6XE5DnPmzDGSzOOPP+5UHhUVZSRl6X9Oy//jjz+aPn36mJCQEOPp6WnKly9vOnbsaJYtW+ZUb8+ePaZly5bGx8fHlC9f3kyYMMH85z//ybIMly5dMqNHjzYhISHG19fX3H333ebAgQOmdOnS5rHHHnNq085nISeO/cDq1atN3bp1jbe3t6levXqW9XHhwgXz1FNPmXLlyhlfX1/TtGlTExcXl2Xf/+abb5oWLVpY20GVKlXMiBEjzKlTp5zas7NPyUlaWpopU6aMmTBhglN5To/juZFjxrlz58zzzz9vbUshISGmW7duTo+YsXv8OnfunOnfv78JCAgwJUuWND169LAeC3W9n+mDBw+aFi1aGF9f3yyPaspOfhwDr9YHO8e87B5hmJGRYR544AHj4eFhli9fboz569FBkydPNrVq1TLe3t6mVKlSJiIiwowbN85p+7KzztPS0syIESNMvXr1TMmSJU3x4sVNvXr1rMdzXa5Ro0bmwQcftDUWl3P7/50BcJOpX7++brnlljx9dA5wPVJSUlSqVCm99NJLev755wu6OwVqwoQJWrBggQ4fPuyyH2bi5hMfH6/bb79d3377bY4//stJnj/HEUDhkp6enuVS/5dffqndu3dn+yc6gfx0/vz5LGWO+zbZHqUnn3xSZ86c0ZIlSwq6K/gbmzRpkrp165br0ChJnHEE/uZ+/vlnRUVF6cEHH1RoaKgOHjyoefPmKSAgQPv27bvqnyYD8trChQu1cOFCtW/fXiVKlNDmzZv13//+V9HR0dn+EAZA4ZLnDwAHULiUKlVKEREReuutt/THH3+oePHi6tChgyZNmkRohMvVrVtXHh4emjJlilJTU60fzLz00ksF3TUANnDGEQAAALZwjyMAAABsITgCAADAFu5xvE6ZmZk6fvy4SpYsmed/IhEAAOQPY4xOnz6t0NDQHP92PHJGcLxOx48fz/L3KAEAQNHw66+/qkKFCgXdjSKH4HidHH/C6Ndff83271Jej/T0dK1Zs0bR0dE5/uF55A3G2jUYZ9dhrF2DcXad/Brr1NRUhYWFXfefIrzZERyvk+PytL+/f54GRz8/P/n7+7NDymeMtWswzq7DWLsG4+w6+T3W3GZ2fbi4DwAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALDFo6A7ABSk2mNXKy3DraC7kSs/T+pQ0F0AANykOOMIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAW1waHDdu3KhOnTopNDRUbm5uWr58uTUtPT1dzzzzjOrUqaPixYsrNDRUffr00fHjx53aSE5OVu/eveXv76/AwED1799fZ86ccaqzZ88eNW/eXD4+PgoLC9OUKVOy9GXp0qWqXr26fHx8VKdOHX3++ef5sswAAAB/Fy4NjmfPnlW9evU0Z86cLNPOnTunb7/9VqNHj9a3336rjz/+WIcOHdI999zjVK93797av3+/YmNjtXLlSm3cuFEDBw60pqempio6OlqVKlXSzp07NXXqVI0dO1bz58+36mzZskUPPPCA+vfvr127dqlLly7q0qWL9u3bl38LDwAAUMS59C/HtGvXTu3atct2WkBAgGJjY53KZs+erTvvvFNHjx5VxYoVdeDAAa1atUrbt29Xw4YNJUmzZs1S+/bt9eqrryo0NFSLFi3SxYsX9fbbb8vLy0u1atVSfHy8pk2bZgXMGTNmqG3bthoxYoQkacKECYqNjdXs2bM1b968fBwBAACAoqtQ/8nBU6dOyc3NTYGBgZKkuLg4BQYGWqFRkqKiouTu7q6tW7fq3nvvVVxcnFq0aCEvLy+rTkxMjCZPnqyTJ0+qVKlSiouL0/Dhw53mFRMT43Tp/EppaWlKS0uzXqempkr66xJ7enp6HiytrHbyqj3kzDHG3u6mgHuSe0Vp+2Cbdh3G2jUYZ9fJr7Fm3d2YQhscL1y4oGeeeUYPPPCA/P39JUkJCQkqW7asUz0PDw8FBQUpISHBqhMeHu5UJzg42JpWqlQpJSQkWGWX13G0kZ2JEydq3LhxWcrXrFkjPz+/3C/gVVx55hX5Z0LDzILuQq4Vxftx2aZdh7F2DcbZdfJ6rM+dO5en7d1sCmVwTE9PV48ePWSM0dy5cwu6O5KkUaNGOZ2lTE1NVVhYmKKjo61ge6PS09MVGxurNm3ayNPTM0/aRPYcYz16h7vSMt0Kuju5sm9sTEF3wTa2addhrF2DcXad/BprxxVDXJ9CFxwdofGXX37R+vXrnUJZSEiIkpKSnOpfunRJycnJCgkJseokJiY61XG8vlYdx/TseHt7y9vbO0u5p6dnnu888qNNZC8t001pGUUrOBbFbYNt2nUYa9dgnF0nr8ea9XZjCtVzHB2h8fDhw1q7dq1Kly7tND0yMlIpKSnauXOnVbZ+/XplZmaqUaNGVp2NGzc63cMQGxuratWqqVSpUladdevWObUdGxuryMjI/Fo0AACAIs+lwfHMmTOKj49XfHy8JOnIkSOKj4/X0aNHlZ6erm7dumnHjh1atGiRMjIylJCQoISEBF28eFGSVKNGDbVt21aPPvqotm3bpq+//lpDhgxRz549FRoaKknq1auXvLy81L9/f+3fv18ffPCBZsyY4XSZeejQoVq1apVee+01HTx4UGPHjtWOHTs0ZMgQVw4HAABAkeLS4Lhjxw41aNBADRo0kCQNHz5cDRo00JgxY3Ts2DGtWLFCv/32m+rXr69y5cpZ/7Zs2WK1sWjRIlWvXl2tW7dW+/bt1axZM6dnNAYEBGjNmjU6cuSIIiIi9NRTT2nMmDFOz3ps0qSJFi9erPnz56tevXpatmyZli9frtq1a7tuMAAAAIoYl97j2KpVKxmT8+NPrjbNISgoSIsXL75qnbp162rTpk1XrdO9e3d17979mvMDAADAXwrVPY4AAAAovAiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALDFpcFx48aN6tSpk0JDQ+Xm5qbly5c7TTfGaMyYMSpXrpx8fX0VFRWlw4cPO9VJTk5W79695e/vr8DAQPXv319nzpxxqrNnzx41b95cPj4+CgsL05QpU7L0ZenSpapevbp8fHxUp04dff7553m+vAAAAH8nLg2OZ8+eVb169TRnzpxsp0+ZMkUzZ87UvHnztHXrVhUvXlwxMTG6cOGCVad3797av3+/YmNjtXLlSm3cuFEDBw60pqempio6OlqVKlXSzp07NXXqVI0dO1bz58+36mzZskUPPPCA+vfvr127dqlLly7q0qWL9u3bl38LDwAAUMR5uHJm7dq1U7t27bKdZozR9OnT9cILL6hz586SpHfffVfBwcFavny5evbsqQMHDmjVqlXavn27GjZsKEmaNWuW2rdvr1dffVWhoaFatGiRLl68qLffflteXl6qVauW4uPjNW3aNCtgzpgxQ23bttWIESMkSRMmTFBsbKxmz56tefPmZdu/tLQ0paWlWa9TU1MlSenp6UpPT8+T8XG0k1ftIWeOMfZ2NwXck9wrStsH27TrMNauwTi7Tn6NNevuxrg0OF7NkSNHlJCQoKioKKssICBAjRo1UlxcnHr27Km4uDgFBgZaoVGSoqKi5O7urq1bt+ree+9VXFycWrRoIS8vL6tOTEyMJk+erJMnT6pUqVKKi4vT8OHDneYfExOT5dL55SZOnKhx48ZlKV+zZo38/PxuYMmzio2NzdP2kLMJDTMLugu5VhRvq2Cbdh3G2jUYZ9fJ67E+d+5cnrZ3syk0wTEhIUGSFBwc7FQeHBxsTUtISFDZsmWdpnt4eCgoKMipTnh4eJY2HNNKlSqlhISEq84nO6NGjXIKm6mpqQoLC1N0dLT8/f1zs6g5Sk9PV2xsrNq0aSNPT888aRPZc4z16B3uSst0K+ju5Mq+sTEF3QXb2KZdh7F2DcbZdfJrrB1XDHF9Ck1wLOy8vb3l7e2dpdzT0zPPdx750Sayl5bpprSMohUci+K2wTbtOoy1azDOrpPXY816uzGF5nE8ISEhkqTExESn8sTERGtaSEiIkpKSnKZfunRJycnJTnWya+PyeeRUxzEdAAAAWRWa4BgeHq6QkBCtW7fOKktNTdXWrVsVGRkpSYqMjFRKSop27txp1Vm/fr0yMzPVqFEjq87GjRudbn6NjY1VtWrVVKpUKavO5fNx1HHMBwAAAFm5NDieOXNG8fHxio+Pl/TXD2Li4+N19OhRubm5adiwYXrppZe0YsUK7d27V3369FFoaKi6dOkiSapRo4batm2rRx99VNu2bdPXX3+tIUOGqGfPngoNDZUk9erVS15eXurfv7/279+vDz74QDNmzHC6P3Ho0KFatWqVXnvtNR08eFBjx47Vjh07NGTIEFcOBwAAQJHi0nscd+zYobvuust67Qhzffv21cKFCzVy5EidPXtWAwcOVEpKipo1a6ZVq1bJx8fHes+iRYs0ZMgQtW7dWu7u7uratatmzpxpTQ8ICNCaNWs0ePBgRUREqEyZMhozZozTsx6bNGmixYsX64UXXtBzzz2nW2+9VcuXL1ft2rVdMAoAAABFk0uDY6tWrWRMzs/Nc3Nz0/jx4zV+/Pgc6wQFBWnx4sVXnU/dunW1adOmq9bp3r27unfvfvUOAwAAwFJo7nEEAABA4UZwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADY4lHQHcDfR+VnPyvoLtjmXcxoyp0F3QsAAIoWzjgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwJZCFRwzMjI0evRohYeHy9fXV1WqVNGECRNkjLHqGGM0ZswYlStXTr6+voqKitLhw4ed2klOTlbv3r3l7++vwMBA9e/fX2fOnHGqs2fPHjVv3lw+Pj4KCwvTlClTXLKMAAAARVWhCo6TJ0/W3LlzNXv2bB04cECTJ0/WlClTNGvWLKvOlClTNHPmTM2bN09bt25V8eLFFRMTowsXLlh1evfurf379ys2NlYrV67Uxo0bNXDgQGt6amqqoqOjValSJe3cuVNTp07V2LFjNX/+fJcuLwAAQFHiUdAduNyWLVvUuXNndejQQZJUuXJl/fe//9W2bdsk/XW2cfr06XrhhRfUuXNnSdK7776r4OBgLV++XD179tSBAwe0atUqbd++XQ0bNpQkzZo1S+3bt9err76q0NBQLVq0SBcvXtTbb78tLy8v1apVS/Hx8Zo2bZpTwAQAAMD/KVTBsUmTJpo/f76+//573Xbbbdq9e7c2b96sadOmSZKOHDmihIQERUVFWe8JCAhQo0aNFBcXp549eyouLk6BgYFWaJSkqKgoubu7a+vWrbr33nsVFxenFi1ayMvLy6oTExOjyZMn6+TJkypVqlSWvqWlpSktLc16nZqaKklKT09Xenp6niy/o528as/VvIuZa1cqJLzdjdN/i5KitH0U9W26KGGsXYNxdp38GmvW3Y0pVMHx2WefVWpqqqpXr65ixYopIyNDL7/8snr37i1JSkhIkCQFBwc7vS84ONialpCQoLJlyzpN9/DwUFBQkFOd8PDwLG04pmUXHCdOnKhx48ZlKV+zZo38/PyuZ3FzFBsbm6ftucqUOwu6B7k3oWFmQXch1z7//POC7kKuFdVtuihirF2DcXadvB7rc+fO5Wl7N5tCFRw//PBDLVq0SIsXL7YuHw8bNkyhoaHq27dvgfZt1KhRGj58uPU6NTVVYWFhio6Olr+/f57MIz09XbGxsWrTpo08PT3zpE1Xqj12dUF3wTZvd6MJDTM1eoe70jLdCro7ubJvbExBd8G2or5NFyWMtWswzq6TX2PtuGKI61OoguOIESP07LPPqmfPnpKkOnXq6JdfftHEiRPVt29fhYSESJISExNVrlw5632JiYmqX7++JCkkJERJSUlO7V66dEnJycnW+0NCQpSYmOhUx/HaUedK3t7e8vb2zlLu6emZ5zuP/GjTFdIyilYAk6S0TLci1++iuG0U1W26KGKsXYNxdp28HmvW240pVL+qPnfunNzdnbtUrFgxZWb+dTkxPDxcISEhWrdunTU9NTVVW7duVWRkpCQpMjJSKSkp2rlzp1Vn/fr1yszMVKNGjaw6GzdudLrPITY2VtWqVcv2MjUAAAAKWXDs1KmTXn75ZX322Wf6+eef9cknn2jatGm69957JUlubm4aNmyYXnrpJa1YsUJ79+5Vnz59FBoaqi5dukiSatSoobZt2+rRRx/Vtm3b9PXXX2vIkCHq2bOnQkNDJUm9evWSl5eX+vfvr/379+uDDz7QjBkznC5FAwAAwFmhulQ9a9YsjR49WoMGDVJSUpJCQ0P1z3/+U2PGjLHqjBw5UmfPntXAgQOVkpKiZs2aadWqVfLx8bHqLFq0SEOGDFHr1q3l7u6url27aubMmdb0gIAArVmzRoMHD1ZERITKlCmjMWPG8CgeAACAqyhUwbFkyZKaPn26pk+fnmMdNzc3jR8/XuPHj8+xTlBQkBYvXnzVedWtW1ebNm263q4CAADcdArVpWoAAAAUXgRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhS6ILjsWPH9OCDD6p06dLy9fVVnTp1tGPHDmu6MUZjxoxRuXLl5Ovrq6ioKB0+fNipjeTkZPXu3Vv+/v4KDAxU//79debMGac6e/bsUfPmzeXj46OwsDBNmTLFJcsHAABQVBWq4Hjy5Ek1bdpUnp6e+uKLL/Tdd9/ptddeU6lSpaw6U6ZM0cyZMzVv3jxt3bpVxYsXV0xMjC5cuGDV6d27t/bv36/Y2FitXLlSGzdu1MCBA63pqampio6OVqVKlbRz505NnTpVY8eO1fz58126vAAAAEWJR0F34HKTJ09WWFiYFixYYJWFh4db/2+M0fTp0/XCCy+oc+fOkqR3331XwcHBWr58uXr27KkDBw5o1apV2r59uxo2bChJmjVrltq3b69XX31VoaGhWrRokS5evKi3335bXl5eqlWrluLj4zVt2jSngAkAAID/U6iC44oVKxQTE6Pu3bvrq6++Uvny5TVo0CA9+uijkqQjR44oISFBUVFR1nsCAgLUqFEjxcXFqWfPnoqLi1NgYKAVGiUpKipK7u7u2rp1q+69917FxcWpRYsW8vLysurExMRo8uTJOnnypNMZToe0tDSlpaVZr1NTUyVJ6enpSk9Pz5Pld7STV+25mncxU9BdsM3b3Tj9tygpSttHUd+mixLG2jUYZ9fJr7Fm3d2YQhUcf/rpJ82dO1fDhw/Xc889p+3bt+uJJ56Ql5eX+vbtq4SEBElScHCw0/uCg4OtaQkJCSpbtqzTdA8PDwUFBTnVufxM5uVtJiQkZBscJ06cqHHjxmUpX7Nmjfz8/K5zibMXGxubp+25ypQ7C7oHuTehYWZBdyHXPv/884LuQq4V1W26KGKsXYNxdp28Hutz587laXs3m0IVHDMzM9WwYUO98sorkqQGDRpo3759mjdvnvr27VugfRs1apSGDx9uvU5NTVVYWJiio6Pl7++fJ/NIT09XbGys2rRpI09Pzzxp05Vqj11d0F2wzdvdaELDTI3e4a60TLeC7k6u7BsbU9BdsK2ob9NFCWPtGoyz6+TXWDuuGOL6FKrgWK5cOdWsWdOprEaNGvroo48kSSEhIZKkxMRElStXzqqTmJio+vXrW3WSkpKc2rh06ZKSk5Ot94eEhCgxMdGpjuO1o86VvL295e3tnaXc09Mzz3ce+dGmK6RlFK0AJklpmW5Frt9Fcdsoqtt0UcRYuwbj7Dp5PdastxtTqH5V3bRpUx06dMip7Pvvv1elSpUk/fVDmZCQEK1bt86anpqaqq1btyoyMlKSFBkZqZSUFO3cudOqs379emVmZqpRo0ZWnY0bNzrd5xAbG6tq1aple5kaAAAAhSw4Pvnkk/rmm2/0yiuv6IcfftDixYs1f/58DR48WJLk5uamYcOG6aWXXtKKFSu0d+9e9enTR6GhoerSpYukv85Qtm3bVo8++qi2bdumr7/+WkOGDFHPnj0VGhoqSerVq5e8vLzUv39/7d+/Xx988IFmzJjhdCkaAAAAzgrVpeo77rhDn3zyiUaNGqXx48crPDxc06dPV+/eva06I0eO1NmzZzVw4EClpKSoWbNmWrVqlXx8fKw6ixYt0pAhQ9S6dWu5u7ura9eumjlzpjU9ICBAa9as0eDBgxUREaEyZcpozJgxPIoHAADgKgpVcJSkjh07qmPHjjlOd3Nz0/jx4zV+/Pgc6wQFBWnx4sVXnU/dunW1adOm6+4nAADAzaZQXaoGAABA4UVwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2OJR0B1A9io/+1lBdwEAAMAJZxwBAABgC8ERAAAAthTqS9WTJk3SqFGjNHToUE2fPl2SdOHCBT311FNasmSJ0tLSFBMTozfeeEPBwcHW+44eParHH39cGzZsUIkSJdS3b19NnDhRHh7/t7hffvmlhg8frv379yssLEwvvPCCHn74YRcvIZB7Rek2Bu9iRlPuLOheAADySqE947h9+3a9+eabqlu3rlP5k08+qf/9739aunSpvvrqKx0/flz33XefNT0jI0MdOnTQxYsXtWXLFr3zzjtauHChxowZY9U5cuSIOnTooLvuukvx8fEaNmyYBgwYoNWrV7ts+QAAAIqaQhkcz5w5o969e+vf//63SpUqZZWfOnVK//nPfzRt2jTdfffdioiI0IIFC7RlyxZ98803kqQ1a9bou+++0/vvv6/69eurXbt2mjBhgubMmaOLFy9KkubNm6fw8HC99tprqlGjhoYMGaJu3brp9ddfL5DlBQAAKAoK5aXqwYMHq0OHDoqKitJLL71kle/cuVPp6emKioqyyqpXr66KFSsqLi5OjRs3VlxcnOrUqeN06TomJkaPP/649u/frwYNGiguLs6pDUedYcOG5dintLQ0paWlWa9TU1MlSenp6UpPT7/RRbbacvzXu5jJkzaRPW934/Rf5A/H+ObVZwQ5u3z/gfzDOLtOfo016+7GFLrguGTJEn377bfavn17lmkJCQny8vJSYGCgU3lwcLASEhKsOpeHRsd0x7Sr1UlNTdX58+fl6+ubZd4TJ07UuHHjspSvWbNGfn5+9hfQhtjYWO4Lc5EJDTMLugs3hdjY2ILuwk2DsXYNxtl18nqsz507l6ft3WwKVXD89ddfNXToUMXGxsrHx6egu+Nk1KhRGj58uPU6NTVVYWFhio6Olr+/f57MIz09XbGxsWrTpo0avLw+T9pE9rzdjSY0zNToHe5Ky3Qr6O78bTnGuU2bNvL09Czo7vytXb7/YKzzD+PsOvk11o4rhrg+hSo47ty5U0lJSbr99tutsoyMDG3cuFGzZ8/W6tWrdfHiRaWkpDiddUxMTFRISIgkKSQkRNu2bXNqNzEx0Zrm+K+j7PI6/v7+2Z5tlCRvb295e3tnKff09MzznYenp6fSMggzrpCW6cZYu0B+fE6QPcbaNRhn18nrsWa93ZhC9eOY1q1ba+/evYqPj7f+NWzYUL1797b+39PTU+vWrbPec+jQIR09elSRkZGSpMjISO3du1dJSUlWndjYWPn7+6tmzZpWncvbcNRxtAEAAICsCtUZx5IlS6p27dpOZcWLF1fp0qWt8v79+2v48OEKCgqSv7+//vWvfykyMlKNGzeWJEVHR6tmzZp66KGHNGXKFCUkJOiFF17Q4MGDrTOGjz32mGbPnq2RI0fqkUce0fr16/Xhhx/qs8+KzvPxAAAAXK1QBUc7Xn/9dbm7u6tr165ODwB3KFasmFauXKnHH39ckZGRKl68uPr27avx48dbdcLDw/XZZ5/pySef1IwZM1ShQgW99dZbiomJKYhFAgAAKBIKfXD88ssvnV77+Phozpw5mjNnTo7vqVSpkj7//POrttuqVSvt2rUrL7oIAABwUyhU9zgCAACg8CI4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMCWQhUcJ06cqDvuuEMlS5ZU2bJl1aVLFx06dMipzoULFzR48GCVLl1aJUqUUNeuXZWYmOhU5+jRo+rQoYP8/PxUtmxZjRgxQpcuXXKq8+WXX+r222+Xt7e3qlatqoULF+b34gEAABRphSo4fvXVVxo8eLC++eYbxcbGKj09XdHR0Tp79qxV58knn9T//vc/LV26VF999ZWOHz+u++67z5qekZGhDh066OLFi9qyZYveeecdLVy4UGPGjLHqHDlyRB06dNBdd92l+Ph4DRs2TAMGDNDq1atdurwAAABFiUdBd+Byq1atcnq9cOFClS1bVjt37lSLFi106tQp/ec//9HixYt19913S5IWLFigGjVq6JtvvlHjxo21Zs0afffdd1q7dq2Cg4NVv359TZgwQc8884zGjh0rLy8vzZs3T+Hh4XrttdckSTVq1NDmzZv1+uuvKyYmJtu+paWlKS0tzXqdmpoqSUpPT1d6enqeLL+jnfT0dHkXM3nSJrLn7W6c/ov84RjfvPqMIGeX7z+Qfxhn18mvsWbd3ZhCFRyvdOrUKUlSUFCQJGnnzp1KT09XVFSUVad69eqqWLGi4uLi1LhxY8XFxalOnToKDg626sTExOjxxx/X/v371aBBA8XFxTm14agzbNiwHPsyceJEjRs3Lkv5mjVr5OfndyOLmUVsbKym3JmnTSIHExpmFnQXbgqxsbEF3YWbBmPtGoyz6+T1WJ87dy5P27vZFNrgmJmZqWHDhqlp06aqXbu2JCkhIUFeXl4KDAx0qhscHKyEhASrzuWh0THdMe1qdVJTU3X+/Hn5+vpm6c+oUaM0fPhw63VqaqrCwsIUHR0tf3//G1vY/y89PV2xsbFq06aNGry8Pk/aRPa83Y0mNMzU6B3uSst0K+ju/G05xrlNmzby9PQs6O78rV2+/2Cs8w/j7Dr5NdaOK4a4PoU2OA4ePFj79u3T5s2bC7orkiRvb295e3tnKff09MzznYenp6fSMggzrpCW6cZYu0B+fE6QPcbaNRhn18nrsWa93ZhC9eMYhyFDhmjlypXasGGDKlSoYJWHhITo4sWLSklJcaqfmJiokJAQq86Vv7J2vL5WHX9//2zPNgIAAKCQBUdjjIYMGaJPPvlE69evV3h4uNP0iIgIeXp6at26dVbZoUOHdPToUUVGRkqSIiMjtXfvXiUlJVl1YmNj5e/vr5o1a1p1Lm/DUcfRBgAAALIqVJeqBw8erMWLF+vTTz9VyZIlrXsSAwIC5Ovrq4CAAPXv31/Dhw9XUFCQ/P399a9//UuRkZFq3LixJCk6Olo1a9bUQw89pClTpighIUEvvPCCBg8ebF1qfuyxxzR79myNHDlSjzzyiNavX68PP/xQn332WYEtOwAAQGFXqM44zp07V6dOnVKrVq1Urlw5698HH3xg1Xn99dfVsWNHde3aVS1atFBISIg+/vhja3qxYsW0cuVKFStWTJGRkXrwwQfVp08fjR8/3qoTHh6uzz77TLGxsapXr55ee+01vfXWWzk+igcAAACF7IyjMdd+pp6Pj4/mzJmjOXPm5FinUqVK+vzzz6/aTqtWrbRr165c9xEAAOBmVajOOAIAAKDwIjgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWj4LuAIC/v9pjVystw62gu5ErP0/qUNBdAIBChzOOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwxaOgOwAAhVHlZz8r6C7kincxoyl3FnQvAPzdccYRAAAAthAcAQAAYMtNHxznzJmjypUry8fHR40aNdK2bdsKuksAAACF0k0dHD/44AMNHz5cL774or799lvVq1dPMTExSkpKKuiuAQAAFDo3dXCcNm2aHn30UfXr1081a9bUvHnz5Ofnp7fffruguwYAAFDo3LS/qr548aJ27typUaNGWWXu7u6KiopSXFxclvppaWlKS0uzXp86dUqSlJycrPT09DzpU3p6us6dO6cTJ07I49LZPGkT2fPINDp3LlMe6e7KyHQr6O78bTHOruMY6/rPf6y0IjTWW0e1Lugu5Mrl+2lPT8+C7s7fWn6N9enTpyVJxpg8a/NmctMGxz///FMZGRkKDg52Kg8ODtbBgwez1J84caLGjRuXpTw8PDzf+oj81augO3CTYJxdpyiOdZnXCroHuFmdPn1aAQEBBd2NIuemDY65NWrUKA0fPtx6nZmZqeTkZJUuXVpubnnz7T41NVVhYWH69ddf5e/vnydtInuMtWswzq7DWLsG4+w6+TXWxhidPn1aoaGhedbmzeSmDY5lypRRsWLFlJiY6FSemJiokJCQLPW9vb3l7e3tVBYYGJgvffP392eH5CKMtWswzq7DWLsG4+w6+THWnGm8fjftj2O8vLwUERGhdevWWWWZmZlat26dIiMjC7BnAAAAhdNNe8ZRkoYPH66+ffuqYcOGuvPOOzV9+nSdPXtW/fr1K+iuAQAAFDo3dXC8//779ccff2jMmDFKSEhQ/fr1tWrVqiw/mHEVb29vvfjii1kuiSPvMdauwTi7DmPtGoyz6zDWhZOb4ffoAAAAsOGmvccRAAAAuUNwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAsRObMmaPKlSvLx8dHjRo10rZt2wq6S0XKxIkTdccdd6hkyZIqW7asunTpokOHDjnVuXDhggYPHqzSpUurRIkS6tq1a5a/HnT06FF16NBBfn5+Klu2rEaMGKFLly65clGKlEmTJsnNzU3Dhg2zyhjnvHPs2DE9+OCDKl26tHx9fVWnTh3t2LHDmm6M0ZgxY1SuXDn5+voqKipKhw8fdmojOTlZvXv3lr+/vwIDA9W/f3+dOXPG1YtSaGVkZGj06NEKDw+Xr6+vqlSpogkTJujyh44wztdn48aN6tSpk0JDQ+Xm5qbly5c7Tc+rcd2zZ4+aN28uHx8fhYWFacqUKfm9aDcvg0JhyZIlxsvLy7z99ttm//795tFHHzWBgYEmMTGxoLtWZMTExJgFCxaYffv2mfj4eNO+fXtTsWJFc+bMGavOY489ZsLCwsy6devMjh07TOPGjU2TJk2s6ZcuXTK1a9c2UVFRZteuXebzzz83ZcqUMaNGjSqIRSr0tm3bZipXrmzq1q1rhg4dapUzznkjOTnZVKpUyTz88MNm69at5qeffjKrV682P/zwg1Vn0qRJJiAgwCxfvtzs3r3b3HPPPSY8PNycP3/eqtO2bVtTr149880335hNmzaZqlWrmgceeKAgFqlQevnll03p0qXNypUrzZEjR8zSpUtNiRIlzIwZM6w6jPP1+fzzz83zzz9vPv74YyPJfPLJJ07T82JcT506ZYKDg03v3r3Nvn37zH//+1/j6+tr3nzzTVct5k2F4FhI3HnnnWbw4MHW64yMDBMaGmomTpxYgL0q2pKSkowk89VXXxljjElJSTGenp5m6dKlVp0DBw4YSSYuLs4Y89dOzt3d3SQkJFh15s6da/z9/U1aWpprF6CQO336tLn11ltNbGysadmypRUcGee888wzz5hmzZrlOD0zM9OEhISYqVOnWmUpKSnG29vb/Pe//zXGGPPdd98ZSWb79u1WnS+++MK4ubmZY8eO5V/ni5AOHTqYRx55xKnsvvvuM7179zbGMM555crgmFfj+sYbb5hSpUo57TueeeYZU61atXxeopsTl6oLgYsXL2rnzp2Kioqyytzd3RUVFaW4uLgC7FnRdurUKUlSUFCQJGnnzp1KT093Gufq1aurYsWK1jjHxcWpTp06Tn89KCYmRqmpqdq/f78Le1/4DR48WB06dHAaT4lxzksrVqxQw4YN1b17d5UtW1YNGjTQv//9b2v6kSNHlJCQ4DTWAQEBatSokdNYBwYGqmHDhladqKgoubu7a+vWra5bmEKsSZMmWrdunb7//ntJ0u7du7V582a1a9dOEuOcX/JqXOPi4tSiRQt5eXlZdWJiYnTo0CGdPHnSRUtz87ip/+RgYfHnn38qIyMjy586DA4O1sGDBwuoV0VbZmamhg0bpqZNm6p27dqSpISEBHl5eSkwMNCpbnBwsBISEqw62a0HxzT8ZcmSJfr222+1ffv2LNMY57zz008/ae7cuRo+fLiee+45bd++XU888YS8vLzUt29fa6yyG8vLx7ps2bJO0z08PBQUFMRY/3/PPvusUlNTVb16dRUrVkwZGRl6+eWX1bt3b0linPNJXo1rQkKCwsPDs7ThmFaqVKl86f/NiuCIv6XBgwdr37592rx5c0F35W/n119/1dChQxUbGysfH5+C7s7fWmZmpho2bKhXXnlFktSgQQPt27dP8+bNU9++fQu4d38fH374oRYtWqTFixerVq1aio+P17BhwxQaGso4A1fgUnUhUKZMGRUrVizLr04TExMVEhJSQL0quoYMGaKVK1dqw4YNqlChglUeEhKiixcvKiUlxan+5eMcEhKS7XpwTMNfl6KTkpJ0++23y8PDQx4eHvrqq680c+ZMeXh4KDg4mHHOI+XKlVPNmjWdymrUqKGjR49K+r+xutq+IyQkRElJSU7TL126pOTkZMb6/xsxYoSeffZZ9ezZU3Xq1NFDDz2kJ598UhMnTpTEOOeXvBpX9ieuRXAsBLy8vBQREaF169ZZZZmZmVq3bp0iIyMLsGdFizFGQ4YM0SeffKL169dnuXQREREhT09Pp3E+dOiQjh49ao1zZGSk9u7d67Sjio2Nlb+/f5YD+M2qdevW2rt3r+Lj461/DRs2VO/eva3/Z5zzRtOmTbM8Uur7779XpUqVJEnh4eEKCQlxGuvU1FRt3brVaaxTUlK0c+dOq8769euVmZmpRo0auWApCr9z587J3d35cFisWDFlZmZKYpzzS16Na2RkpDZu3Kj09HSrTmxsrKpVq8Zl6vxQ0L/OwV+WLFlivL29zcKFC813331nBg4caAIDA51+dYqre/zxx01AQID58ssvze+//279O3funFXnscceMxUrVjTr1683O3bsMJGRkSYyMtKa7nhMTHR0tImPjzerVq0yt9xyC4+JuYbLf1VtDOOcV7Zt22Y8PDzMyy+/bA4fPmwWLVpk/Pz8zPvvv2/VmTRpkgkMDDSffvqp2bNnj+ncuXO2jzNp0KCB2bp1q9m8ebO59dZbb/rHxFyub9++pnz58tbjeD7++GNTpkwZM3LkSKsO43x9Tp8+bXbt2mV27dplJJlp06aZXbt2mV9++cUYkzfjmpKSYoKDg81DDz1k9u3bZ5YsWWL8/Px4HE8+ITgWIrNmzTIVK1Y0Xl5e5s477zTffPNNQXepSJGU7b8FCxZYdc6fP28GDRpkSpUqZfz8/My9995rfv/9d6d2fv75Z9OuXTvj6+trypQpY5566imTnp7u4qUpWq4Mjoxz3vnf//5nateubby9vU316tXN/PnznaZnZmaa0aNHm+DgYOPt7W1at25tDh065FTnxIkT5oEHHjAlSpQw/v7+pl+/fub06dOuXIxCLTU11QwdOtRUrFjR+Pj4mH/84x/m+eefd3q8C+N8fTZs2JDtfrlv377GmLwb1927d5tmzZoZb29vU758eTNp0iRXLeJNx82Yyx6NDwAAAOSAexwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGDL/wM6tV3zQ96S4AAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from sentence_transformers import SentenceTransformer\n",
    "\n",
    "# To get the value of the max sequence_length, we will query the underlying `SentenceTransformer` object used in the RecursiveCharacterTextSplitter.\n",
    "print(\n",
    "    f\"Model's maximum sequence length: {SentenceTransformer('thenlper/gte-small').max_seq_length}\"\n",
    ")\n",
    "\n",
    "from transformers import AutoTokenizer\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"thenlper/gte-small\")\n",
    "lengths = [len(tokenizer.encode(doc.page_content)) for doc in tqdm(docs_processed)]\n",
    "\n",
    "# Plot the distrubution of document lengths, counted as the number of tokens\n",
    "fig = pd.Series(lengths).hist()\n",
    "plt.title(\"Distribution of document lengths in the knowledge base (in count of tokens)\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "L3teXczl9-9M"
   },
   "source": [
    "πŸ‘€ As you can see, __the chunk lengths are not aligned with our limit of 512 tokens__, and some documents are above the limit, thus some part of them will be lost in truncation!\n",
    " - So we should change the `RecursiveCharacterTextSplitter` class to count length in number of tokens instead of number of characters.\n",
    " - Then we can choose a specific chunk size, here we would choose a lower threshold than 512:\n",
    "    - smaller documents could allow the split to focus more on specific ideas.\n",
    "    - But too small chunks would split sentences in half, thus losing meaning again: the proper tuning is a matter of balance."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "referenced_widgets": [
      "f900cf4ab3a94f45bfa7298f433566ed"
     ]
    },
    "id": "9hvIL2jO9-9M",
    "outputId": "9baf219d-2954-4927-9681-e28572db90db"
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f900cf4ab3a94f45bfa7298f433566ed",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/17995 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo4AAAGzCAYAAAChApYOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJmElEQVR4nO3de3yP9eP/8edm23u22ea4mTnsQzkfMmGVnGZLS4QQRaI+mDJKpXKuSAepRH0qOvkIlYrEnJORREkUfRTFtqIdnGa21++Pfu/r6+29cW02Gx73282t3tf1er+u1/W6Ts/3dZqHMcYIAAAAOA/Pkm4AAAAALg0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtxR4cJ0yYIA8Pj+KejCSpXbt2ateunfV57dq18vDw0KJFiy7K9O+++27VqlXrokyrsI4eParBgwcrNDRUHh4eSkhIKHAdHh4emjBhQpG37UpUq1Yt3X333SXdjPO6++67FRAQUKzTuFjr1cXaL1zs/c+F+vXXX+Xh4aG5c+cWWZ1z586Vh4eHfv311yKr065atWrplltuuejTvVBHjx5VlSpV9P7771vDLuZx9HJXFMdAu5zr/zfffFNs0yisPn36qFevXoX6boGCo7MTnP98fX0VFham2NhYvfTSS8rMzCxUI8528OBBTZgwQdu3by+S+opSaW6bHU8//bTmzp2roUOH6t1339Vdd91V0k26rMybN08vvvhiSTejUI4fP64JEyZo7dq1Jd2UInEpLwtcuWbMmKFy5cqpT58+Jd2UEvX0009r8eLFxVKv3WNgcbWhNHjkkUf04Ycf6rvvvivwdwt1xnHSpEl69913NWvWLN1///2SpISEBDVu3Fjff/+9S9knnnhCJ06cKFD9Bw8e1MSJEwsczlasWKEVK1YU6DsFda62/ec//9FPP/1UrNO/UKtXr1br1q01fvx43XnnnYqMjCzpJl1WLuWwcvz4cU2cOLHEguOJEyf0xBNPFFl9l/KywJUpOztbM2bM0ODBg1WmTBlreGGOo5e64gptBTkGXs7B8ZprrlGLFi30/PPPF/i7hQqOnTt31p133qmBAwdqzJgxWr58uVauXKnU1FTdeuutLiu4l5eXfH19CzMZ244fPy5J8vHxkY+PT7FO61y8vb3lcDhKbPp2pKamKjg4uKSbAbjx9fWVl5dXSTcDKDFLlizRn3/+6XYJ8WIcR68UHAP/T69evfTRRx/p6NGjBfpekd3j2KFDB40dO1a//fab3nvvPWt4XvdmJCYm6oYbblBwcLACAgJUt25dPfbYY5L+uS/o2muvlSQNHDjQuizuvO+mXbt2atSokbZu3aobb7xRfn5+1nfPvsfRKScnR4899phCQ0Pl7++vW2+9VQcOHHApk9+9ZmfWeb625XWP47Fjx/Tggw+qevXqcjgcqlu3rp577jkZY1zKeXh4aPjw4Vq8eLEaNWokh8Ohhg0b6osvvsi7w8+SmpqqQYMGKSQkRL6+vmratKnefvtta7zzfqt9+/Zp6dKlVtvPde9RVlaWRo4cqcqVK6tcuXK69dZb9fvvv+dZdtu2bercubMCAwMVEBCgjh07atOmTW7l0tLSNHLkSNWqVUsOh0Ph4eHq37+//vrrL0n53xPlbP+ZZ8Oc68L333+vtm3bys/PT3Xq1LHuKVu3bp1atWqlsmXLqm7dulq5cqVbe/744w/dc889CgkJsfr8rbfeynPaCxYs0FNPPaXw8HD5+vqqY8eO2rt3r0t7li5dqt9++83q38Lc85qWlqaEhARrnalTp46eeeYZ5ebmWmWc96M999xzev3111W7dm05HA5de+212rJli1udCxcuVIMGDeTr66tGjRrp448/dllff/31V1WuXFmSNHHiRKv9Z99z+Mcff6hbt24KCAhQ5cqV9dBDDyknJ8elzPz58xUZGaly5copMDBQjRs31owZM84732dPz7nv2Lt3r+6++24FBwcrKChIAwcOtH4s5sfOssjNzT3n8nTavHmzbrrpJgUFBcnPz09t27bVV199dd75yUtWVpZuueUWBQUFaePGjQWez9OnT2vy5MnW8q5Vq5Yee+wxZWVlWWVGjRqlihUruuxj7r//fnl4eOill16yhqWkpMjDw0OzZs06Z5t3796tnj17qkKFCvL19VWLFi306aefupXbuXOnOnTooLJlyyo8PFxPPvmkyzrrlJubqwkTJigsLEx+fn5q3769fvzxxzz3wXa2hfNZsWKFmjVrJl9fXzVo0EAfffSRy/gjR47ooYceUuPGjRUQEKDAwEB17tw5z0t4L7/8sho2bCg/Pz+VL19eLVq00Lx581zK2Nmn5Gfx4sWqVauWateu7TI8r+PohR4zTp48qQkTJujqq6+Wr6+vqlatqu7du+uXX36xytg5fp3r3tjCbtMeHh46duyY3n77bWv7Pd+94EV9DDxfG+we8872999/q2XLlgoPD7euUGZlZWn8+PGqU6eOHA6Hqlevrocffthlu3a2yc4yz8zMVEJCgnWcrVKlijp16qRvv/3WpVynTp107NgxJSYmnrfdZyrSn/d33XWXHnvsMa1YsUL33ntvnmV27typW265RU2aNNGkSZPkcDi0d+9ea0dcv359TZo0SePGjdN9992nNm3aSJKuu+46q47Dhw+rc+fO6tOnj+68806FhIScs11PPfWUPDw89Mgjjyg1NVUvvviioqOjtX37dpUtW9b2/Nlp25mMMbr11lu1Zs0aDRo0SM2aNdPy5cs1evRo/fHHH5o+fbpL+Q0bNuijjz7SsGHDVK5cOb300kvq0aOH9u/fr4oVK+bbrhMnTqhdu3bau3evhg8froiICC1cuFB333230tLSNGLECNWvX1/vvvuuRo4cqfDwcD344IOSZIWFvAwePFjvvfee+vbtq+uuu06rV69WXFycW7mdO3eqTZs2CgwM1MMPPyxvb2+99tprateunRXepH9uSm7Tpo127dqle+65R82bN9dff/2lTz/9VL///rsqVap07gWQh7///lu33HKL+vTpo9tvv12zZs1Snz599P777yshIUFDhgxR37599eyzz6pnz546cOCAypUrJ+mfA2fr1q2tjbFy5cpatmyZBg0apIyMDLebpqdOnSpPT0899NBDSk9P17Rp09SvXz9t3rxZkvT4448rPT1dv//+u7VsC/pAyfHjx9W2bVv98ccf+ve//60aNWpo48aNGjNmjA4dOuR26XXevHnKzMzUv//9b3l4eGjatGnq3r27/ve//8nb21uStHTpUvXu3VuNGzfWlClT9Pfff2vQoEGqVq2aVU/lypU1a9YsDR06VLfddpu6d+8uSWrSpIlVJicnR7GxsWrVqpWee+45rVy5Us8//7xq166toUOHSvrnR+Edd9yhjh076plnnpEk7dq1S1999ZVGjBhRoL5w6tWrlyIiIjRlyhR9++23euONN1SlShWr/rzYWRbnW57SP5e1OnfurMjISI0fP16enp6aM2eOOnTooC+//FItW7a0PR8nTpxQ165d9c0332jlypXWj9CCzOfgwYP19ttvq2fPnnrwwQe1efNmTZkyRbt27dLHH38sSWrTpo2mT5+unTt3qlGjRpKkL7/8Up6envryyy/1wAMPWMMk6cYbb8y3zTt37tT111+vatWq6dFHH5W/v78WLFigbt266cMPP9Rtt90mSUpOTlb79u11+vRpq9zrr7+e5/51zJgxmjZtmrp06aLY2Fh99913io2N1cmTJ13KFXRbyMuePXvUu3dvDRkyRAMGDNCcOXN0++2364svvlCnTp0kSf/73/+0ePFi3X777YqIiFBKSopee+01tW3bVj/++KPCwsIk/XMr0gMPPKCePXtqxIgROnnypL7//ntt3rxZffv2lVTwfcrZNm7cqObNm593vpwKe8zIycnRLbfcolWrVqlPnz4aMWKEMjMzlZiYqB9++EG1a9cu8PGrIM63rr/77rsaPHiwWrZsqfvuu0+S3ML0mYrjGHiuNtg95p3tr7/+UqdOnXTkyBGtW7dOtWvXVm5urm699VZt2LBB9913n+rXr68dO3Zo+vTp+vnnn90uldtZ5kOGDNGiRYs0fPhwNWjQQIcPH9aGDRu0a9cul/WrQYMGKlu2rL766itrW7bFFMCcOXOMJLNly5Z8ywQFBZlrrrnG+jx+/Hhz5mSmT59uJJk///wz3zq2bNliJJk5c+a4jWvbtq2RZGbPnp3nuLZt21qf16xZYySZatWqmYyMDGv4ggULjCQzY8YMa1jNmjXNgAEDzlvnudo2YMAAU7NmTevz4sWLjSTz5JNPupTr2bOn8fDwMHv37rWGSTI+Pj4uw7777jsjybz88stu0zrTiy++aCSZ9957zxp26tQpExUVZQICAlzmvWbNmiYuLu6c9RljzPbt240kM2zYMJfhffv2NZLM+PHjrWHdunUzPj4+5pdffrGGHTx40JQrV87ceOON1rBx48YZSeajjz5ym15ubq4x5v/WsX379rmMdy7LNWvWWMOc68K8efOsYbt37zaSjKenp9m0aZM1fPny5W7LbdCgQaZq1armr7/+cplWnz59TFBQkDl+/LjLtOvXr2+ysrKscjNmzDCSzI4dO6xhcXFxLuvA+Zy93k2ePNn4+/ubn3/+2aXco48+asqUKWP2799vjDFm3759RpKpWLGiOXLkiFXuk08+MZLMZ599Zg1r3LixCQ8PN5mZmdawtWvXGkkubf3zzz/dlq3TgAEDjCQzadIkl+HXXHONiYyMtD6PGDHCBAYGmtOnT9vuA6ezp+3cd9xzzz0u5W677TZTsWLF89aX37Kwuzxzc3PNVVddZWJjY6310xhjjh8/biIiIkynTp3OOX3ndBYuXGgyMzNN27ZtTaVKlcy2bdtcytmdT+c2OXjwYJdyDz30kJFkVq9ebYwxJjU11Ugyr776qjHGmLS0NOPp6Wluv/12ExISYn3vgQceMBUqVLDmzblOnbmNdOzY0TRu3NicPHnSGpabm2uuu+46c9VVV1nDEhISjCSzefNma1hqaqoJCgpy2Z6Tk5ONl5eX6datm8s8TJgwwUgq1LaQn5o1axpJ5sMPP7SGpaenm6pVq7oco06ePGlycnJcvrtv3z7jcDhc1veuXbuahg0bnnOadvcpecnOzjYeHh7mwQcfdBt39nHUmAs7Zrz11ltGknnhhRfcxjnXB7vHr7zWmzPbWNht2t/fP89jcl6K4xh4rjbYPeadmZkOHTpkGjZsaP71r3+ZX3/91Srz7rvvGk9PT/Pll1+6TGP27NlGkvnqq6+sYXaXeVBQkImPj7c1j1dffbXp3LmzrbJORf46noCAgHM+Xe28t+CTTz4p0OWGMzkcDg0cONB2+f79+1tnmSSpZ8+eqlq1qj7//PNCTd+uzz//XGXKlLF+4Ts9+OCDMsZo2bJlLsOjo6NdflU1adJEgYGB+t///nfe6YSGhuqOO+6whnl7e+uBBx7Q0aNHtW7dukK1XZJb28/+xZyTk6MVK1aoW7du+te//mUNr1q1qvr27asNGzYoIyNDkvThhx+qadOmef6yKeyrJgICAlyePqxbt66Cg4NVv359l199zv939qUxRh9++KG6dOkiY4z++usv619sbKzS09PdTusPHDjQ5R5a5xnn8y2fgli4cKHatGmj8uXLu7QpOjpaOTk5Wr9+vUv53r17q3z58vm26eDBg9qxY4f69+/vcsatbdu2aty4cYHbN2TIEJfPbdq0cZn/4ODgQl36KOg0Dx8+bK1XhXW+5bl9+3bt2bNHffv21eHDh61lcezYMXXs2FHr16+3tQ9LT09XTEyMdu/erbVr16pZs2Z5ljvffDq3yVGjRrmUc545Wbp0qaR/zqDUq1fPWle++uorlSlTRqNHj1ZKSor27Nkj6Z8zjjfccEO+296RI0e0evVq9erVS5mZmdb8Hz58WLGxsdqzZ4/++OMPq22tW7d2OQNbuXJl9evXz6XOVatW6fTp0xo2bJjLcOdDlmcq6LaQl7CwMJf9TWBgoPr3769t27YpOTlZ0j/HE0/Pfw6FOTk5Onz4sHUL1Zn7gODgYP3+++953goiFW6fcqYjR47IGOOyPZ9PYY8ZH374oSpVqpRnvzvXh4IevwqiqLfp4jgG5qcgxzyn33//XW3btlV2drbWr1+vmjVrWuMWLlyo+vXrq169ei7rTIcOHSRJa9ascanLzjIPDg7W5s2bdfDgwfPOj3P7KogivxPd+Q6q/PTu3VtvvPGGBg8erEcffVQdO3ZU9+7d1bNnT2vjPZ9q1aoV6CGYq666yuWzh4eH6tSpU+zvFvvtt98UFhbmElqlfy55O8efqUaNGm51lC9fXn///fd5p3PVVVe59V9+07Hbdk9PT7fLA3Xr1nX5/Oeff+r48eNuw53Tz83N1YEDB9SwYUP98ssv6tGjR4Hbci7h4eFuB76goCBVr17dbZgkqy///PNPpaWl6fXXX9frr7+eZ92pqakun89ePs4d/PmWT0Hs2bNH33//fb6XTwraJueyr1OnjltdderUOeeB7Gy+vr5u7Tp7/Rw2bJgWLFigzp07q1q1aoqJiVGvXr1000032Z7O2c41j4GBgcVSryQrYA0YMCDfOtLT0897oE9ISNDJkye1bds2NWzYsFDtCQwMtLbJs5dlaGiogoODXbbzNm3aWEHzyy+/VIsWLdSiRQtVqFBBX375pUJCQvTdd99Zl1jzsnfvXhljNHbsWI0dOzbPMqmpqapWrZp+++23PC/Pnb1fyG99rFChgls/FnRbyEudOnXc9g9XX321pH/uzQsNDVVubq5mzJihV199Vfv27XO5Z/fMy72PPPKIVq5cqZYtW6pOnTqKiYlR3759df3110sq3D4lL+as+9/PpbDHjF9++UV169Y958NoBT1+FURRb9PFcQzMT0GOeU533XWXvLy8tGvXLoWGhrp8Z8+ePdq1a1eh9/mS+zKfNm2aBgwYoOrVqysyMlI333yz+vfv7xJ0nYwxBT5xU6TB8ffff1d6enqeBymnsmXLav369VqzZo2WLl2qL774Qh988IE6dOigFStWuLyC4Fx1FLX8Oi4nJ8dWm4pCftMpyI7kUneu5ZCX/PrsfH3pPFN055135hsMzry/z06dRSE3N1edOnXSww8/nOd450HvYrbpfNM6U5UqVbR9+3YtX75cy5Yt07JlyzRnzhz179/f5Ub1opjuhc6j3XXk2WefzfcsoZ17WLt27ar58+dr6tSpeuedd/L9gWx3Pu3s5G+44Qb95z//0f/+9z99+eWXatOmjTw8PHTDDTfoyy+/VFhYmHJzc62zrHlxzv9DDz2k2NjYPMuca19/oQq6LRTW008/rbFjx+qee+7R5MmTVaFCBXl6eiohIcHljHL9+vX1008/acmSJfriiy/04Ycf6tVXX9W4ceM0ceLEQu1TzlShQgV5eHgU6IdoaThmFHSfLZWOdl9M3bt31zvvvKMZM2ZoypQpLuNyc3PVuHFjvfDCC3l+9+yTIHb6rlevXmrTpo0+/vhjrVixQs8++6yeeeYZffTRR+rcubPL9/7++2+3k2vnU6TB8d1335WkfHcyTp6enurYsaM6duyoF154QU8//bQef/xxrVmzRtHR0UX+hnznmQMnY4z27t3rshGXL19eaWlpbt/97bffXFJ6QdpWs2ZNrVy5UpmZmS6/2nbv3m2NLwo1a9bU999/r9zcXJeD0oVMp2bNmsrNzbV+mTqd/Z7KypUry8/PL8/3V+7evVuenp7Wil+7dm398MMP55yu85fn2cuiKH8xSrKeFM/JyVF0dHSR1Xuh627t2rV19OjRImuTc9nn9bTw2cOKarvz8fFRly5d1KVLF+Xm5mrYsGF67bXXNHbs2GINGmcrimUh/XN580KWR7du3RQTE6O7775b5cqVO+9TzPlxbpN79uyxzqRI/zyQkZaW5rKdOwNhYmKitmzZokcffVTSPw/CzJo1S2FhYfL39z/nO+yc+z1vb+/zzn/NmjXd9rOS+/7izPUxIiLCGn748GG3wFQU24LzrOmZ68LPP/8sSdZT9osWLVL79u315ptvunw3LS3N7YE9f39/9e7dW71799apU6fUvXt3PfXUUxozZswF71O8vLxUu3Zt7du3r8DfLajatWtr8+bNys7Oth6iO5vd41dx7bMLeqwt6mNgfm0oyDHP6f7771edOnU0btw4BQUFWduj9M+y+O6779SxY8cizT5Vq1bVsGHDNGzYMKWmpqp58+Z66qmnXILj6dOndeDAAd16660FqrvI7nFcvXq1Jk+erIiICLf7Ws505MgRt2HOX/POR8/9/f0lua+IhfXOO++43He5aNEiHTp0yKUDa9eurU2bNunUqVPWsCVLlri9tqcgbbv55puVk5OjV155xWX49OnT5eHh4Zb8C+vmm29WcnKyPvjgA2vY6dOn9fLLLysgIEBt27YtcJ3Otp35+g5Jbk8ylilTRjExMfrkk09cLv2npKRo3rx5uuGGG6xLDz169NB3331nPf15JuevJefB+sz7l3JycvK99FNYZcqUUY8ePfThhx/mGWb//PPPQtXr7++v9PT0QrerV69eSkpK0vLly93GpaWl6fTp0wWqLywsTI0aNdI777zj8q6udevWaceOHS5l/fz8rOkU1uHDh10+e3p6Wj/Qzn61RHG70GURGRmp2rVr67nnnsvzPWcFWUf69++vl156SbNnz9YjjzxSqPbcfPPNkty3QeeZijPfeBAREaFq1app+vTpys7Oti6ntmnTRr/88osWLVqk1q1bn/NSZZUqVdSuXTu99tprOnTokNv4M+f/5ptv1qZNm/T111+7jD/zz+ZJUseOHeXl5eUWns/eR0pFsy0cPHjQZX+TkZGhd955R82aNbMuGZYpU8btTNfChQut+zedzl63fXx81KBBAxljlJ2dXST7lKioqIvy5+l69Oihv/76K89+d/aF3eNXYGCgKlWq5HbP6auvvnpBbfT397e9LyqOY2B+bSjIMe9MY8eO1UMPPaQxY8a4rP+9evXSH3/8of/85z9u3zlx4oSOHTtWoDbn5OS47feqVKmisLAwt33wjz/+qJMnT+b7Zpj8FOqM47Jly7R7926dPn1aKSkpWr16tRITE1WzZk19+umn53xR6aRJk7R+/XrFxcWpZs2aSk1N1auvvqrw8HDdcMMNkv4JD8HBwZo9e7bKlSsnf39/tWrVyuUXakFUqFBBN9xwgwYOHKiUlBS9+OKLqlOnjssrgwYPHqxFixbppptuUq9evfTLL7/ovffec7vHryBt69Kli9q3b6/HH39cv/76q5o2baoVK1bok08+UUJCwjlfL1AQ9913n1577TXdfffd2rp1q2rVqqVFixbpq6++0osvvuh2j4odzZo10x133KFXX31V6enpuu6667Rq1ao8z1w9+eST1rs5hw0bJi8vL7322mvKysrStGnTrHKjR4/WokWLdPvtt+uee+5RZGSkjhw5ok8//VSzZ89W06ZN1bBhQ7Vu3VpjxozRkSNHVKFCBc2fP7/AgcmOqVOnas2aNWrVqpXuvfdeNWjQQEeOHNG3336rlStX5vkj53wiIyP1wQcfaNSoUbr22msVEBCgLl262P7+6NGj9emnn+qWW27R3XffrcjISB07dkw7duzQokWL9Ouvvxb4tUVPP/20unbtquuvv14DBw7U33//rVdeeUWNGjVyCURly5ZVgwYN9MEHH+jqq69WhQoV1KhRI+uVLnYMHjxYR44cUYcOHRQeHq7ffvtNL7/8spo1a+ZyluxiuNBl4enpqTfeeEOdO3dWw4YNNXDgQFWrVk1//PGH1qxZo8DAQH322We26xs+fLgyMjL0+OOPKygoyHr/rF1NmzbVgAED9PrrrystLU1t27bV119/rbffflvdunVT+/btXcq3adNG8+fPV+PGja2zQs2bN5e/v79+/vnnc97f6DRz5kzdcMMNaty4se69917961//UkpKipKSkvT7779b7zp8+OGH9e677+qmm27SiBEjrNfxOM8EOYWEhGjEiBF6/vnndeutt+qmm27Sd999p2XLlqlSpUouZ1yKYlu4+uqrNWjQIG3ZskUhISF66623lJKSojlz5lhlbrnlFk2aNEkDBw7Uddddpx07duj99993ux8sJiZGoaGhuv766xUSEqJdu3bplVdeUVxcnLWPvdB9SteuXfXuu+/q559/LrJL8Xnp37+/3nnnHY0aNUpff/212rRpo2PHjmnlypUaNmyYunbtWqDj1+DBgzV16lQNHjxYLVq00Pr1660zu4UVGRmplStX6oUXXlBYWJgiIiLyfc1NcRwDz9UGu8e8sz377LNKT09XfHy8ypUrpzvvvFN33XWXFixYoCFDhmjNmjW6/vrrlZOTo927d2vBggVavny5WrRoYbvNmZmZCg8PV8+ePdW0aVMFBARo5cqV2rJli9tfiUlMTJSfn5/1airbCvIItvPRcuc/Hx8fExoaajp16mRmzJjh8si709mvEVi1apXp2rWrCQsLMz4+PiYsLMzccccdbq9c+OSTT0yDBg2Ml5eXy6P+bdu2zfeVCPm9jue///2vGTNmjKlSpYopW7asiYuLM7/99pvb959//nlTrVo143A4zPXXX2+++eYbtzrP1bazX8djjDGZmZlm5MiRJiwszHh7e5urrrrKPPvssy6v9zDmn8fs83p8Pr/XBJ0tJSXFDBw40FSqVMn4+PiYxo0b5/l6hIK8iuDEiRPmgQceMBUrVjT+/v6mS5cu5sCBA3m+suXbb781sbGxJiAgwPj5+Zn27dubjRs3utV5+PBhM3z4cFOtWjXj4+NjwsPDzYABA1xeX/HLL7+Y6Oho43A4TEhIiHnsscdMYmJinq/jyWtdyG8e8+rjlJQUEx8fb6pXr268vb1NaGio6dixo3n99detMme+VuVMeb2G4ujRo6Zv374mODjY7XU3eclr+WZmZpoxY8aYOnXqGB8fH1OpUiVz3XXXmeeee86cOnXKZdrPPvtsnvN59vKZP3++qVevnnE4HKZRo0bm008/NT169DD16tVzKbdx40YTGRlpfHx8XOoZMGCA8ff3d5vW2dv3okWLTExMjKlSpYrx8fExNWrUMP/+97/NoUOHztkPebXbWffZr+7K75VNZ8tvWRRkeRpjzLZt20z37t1NxYoVjcPhMDVr1jS9evUyq1atOuf085vOww8/bCSZV155pcDzmZ2dbSZOnGgiIiKMt7e3qV69uhkzZozL63KcZs6caSSZoUOHugyPjo42ktzan9/8//LLL6Z///4mNDTUeHt7m2rVqplbbrnFLFq0yKXc999/b9q2bWt8fX1NtWrVzOTJk82bb77pNg+nT582Y8eONaGhoaZs2bKmQ4cOZteuXaZixYpmyJAhLnXa2Rby49wPLF++3DRp0sQ4HA5Tr149t+Vx8uRJ8+CDD5qqVauasmXLmuuvv94kJSW57ftfe+01c+ONN1rrQe3atc3o0aNNenq6S3129in5ycrKMpUqVTKTJ092GZ7f63gu5Jhx/Phx8/jjj1vrUmhoqOnZs6fLK2bsHr+OHz9uBg0aZIKCgky5cuVMr169rNdCFXab3r17t7nxxhtN2bJl3V7VlJfiOAaeqw12jnl5vcIwJyfH3HHHHcbLy8ssXrzYGPPPq4OeeeYZ07BhQ+NwOEz58uVNZGSkmThxosv6ZWeZZ2VlmdGjR5umTZuacuXKGX9/f9O0aVPr9VxnatWqlbnzzjtt9cWZPP5/YwBcYZo1a6bKlSsX6atzgMJIS0tT+fLl9eSTT+rxxx8v6eaUqMmTJ2vOnDnas2fPRXswE1ee7du3q3nz5vr222/zffgvP0X+HkcApUt2drbbpf61a9fqu+++y/NPdALF6cSJE27DnPdtsj5KI0eO1NGjRzV//vySbgouY1OnTlXPnj0LHBoliTOOwGXu119/VXR0tO68806FhYVp9+7dmj17toKCgvTDDz+c80+TAUVt7ty5mjt3rm6++WYFBARow4YN+u9//6uYmJg8H4QBULoU+QvAAZQu5cuXV2RkpN544w39+eef8vf3V1xcnKZOnUpoxEXXpEkTeXl5adq0acrIyLAemHnyySdLumkAbOCMIwAAAGzhHkcAAADYQnAEAACALdzjWEi5ubk6ePCgypUrV+R/IhEAABQPY4wyMzMVFhaW79+OR/4IjoV08OBBt79HCQAALg0HDhxQeHh4STfjkkNwLCTnnzA6cOBAnn+XsqCys7O1YsUKxcTE5PtH53Fh6OPiRx8XL/q3+NHHxa+k+zgjI0PVq1cv9J8ivNIRHAvJeXk6MDCwyIKjn5+fAgMD2VkVE/q4+NHHxYv+LX70cfErLX3MbWaFw8V9AAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC1eJd0AAAAuJbUeXVrSTSiwX6fGlXQTcJngjCMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMCWUh0cp06dKg8PDyUkJFjDTp48qfj4eFWsWFEBAQHq0aOHUlJSXL63f/9+xcXFyc/PT1WqVNHo0aN1+vRplzJr165V8+bN5XA4VKdOHc2dO/cizBEAAMClq9QGxy1btui1115TkyZNXIaPHDlSn332mRYuXKh169bp4MGD6t69uzU+JydHcXFxOnXqlDZu3Ki3335bc+fO1bhx46wy+/btU1xcnNq3b6/t27crISFBgwcP1vLlyy/a/AEAAFxqSmVwPHr0qPr166f//Oc/Kl++vDU8PT1db775pl544QV16NBBkZGRmjNnjjZu3KhNmzZJklasWKEff/xR7733npo1a6bOnTtr8uTJmjlzpk6dOiVJmj17tiIiIvT888+rfv36Gj58uHr27Knp06eXyPwCAABcCrxKugF5iY+PV1xcnKKjo/Xkk09aw7du3ars7GxFR0dbw+rVq6caNWooKSlJrVu3VlJSkho3bqyQkBCrTGxsrIYOHaqdO3fqmmuuUVJSkksdzjJnXhI/W1ZWlrKysqzPGRkZkqTs7GxlZ2df6CxbdRRFXcgbfVz86OPiRf8WPzt97ChjLlZzikxpWmdKej0uTX1xKSp1wXH+/Pn69ttvtWXLFrdxycnJ8vHxUXBwsMvwkJAQJScnW2XODI3O8c5x5yqTkZGhEydOqGzZsm7TnjJliiZOnOg2fMWKFfLz87M/g+eRmJhYZHUhb/Rx8aOPixf9W/zO1cfTWl7EhhSRzz//vKSb4Kak1uPjx4+XyHQvF6UqOB44cEAjRoxQYmKifH19S7o5LsaMGaNRo0ZZnzMyMlS9enXFxMQoMDDwguvPzs5WYmKiOnXqJG9v7wuuD+7o4+JHHxcv+rf42enjRhMuvfvhf5gQW9JNsJT0euy8YojCKVXBcevWrUpNTVXz5s2tYTk5OVq/fr1eeeUVLV++XKdOnVJaWprLWceUlBSFhoZKkkJDQ/X111+71Ot86vrMMmc/iZ2SkqLAwMA8zzZKksPhkMPhcBvu7e1dpCt+UdcHd/Rx8aOPixf9W/zO1cdZOR4XuTUXrjSuLyW1HpfGvriUlKqHYzp27KgdO3Zo+/bt1r8WLVqoX79+1v97e3tr1apV1nd++ukn7d+/X1FRUZKkqKgo7dixQ6mpqVaZxMREBQYGqkGDBlaZM+twlnHWAQAAAHel6oxjuXLl1KhRI5dh/v7+qlixojV80KBBGjVqlCpUqKDAwEDdf//9ioqKUuvWrSVJMTExatCgge666y5NmzZNycnJeuKJJxQfH2+dMRwyZIheeeUVPfzww7rnnnu0evVqLViwQEuXLr24MwwAAHAJKVXB0Y7p06fL09NTPXr0UFZWlmJjY/Xqq69a48uUKaMlS5Zo6NChioqKkr+/vwYMGKBJkyZZZSIiIrR06VKNHDlSM2bMUHh4uN544w3Fxpaee0AAAABKm1IfHNeuXevy2dfXVzNnztTMmTPz/U7NmjXP+wRZu3bttG3btqJoIgAAwBWhVN3jCAAAgNKL4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsMWrpBsAAACKV61Hl5Z0EyyOMkbTWkqNJixXVo7HOcv+OjXuIrUKdnHGEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGBLqQqOs2bNUpMmTRQYGKjAwEBFRUVp2bJl1viTJ08qPj5eFStWVEBAgHr06KGUlBSXOvbv36+4uDj5+fmpSpUqGj16tE6fPu1SZu3atWrevLkcDofq1KmjuXPnXozZAwAAuKSVquAYHh6uqVOnauvWrfrmm2/UoUMHde3aVTt37pQkjRw5Up999pkWLlyodevW6eDBg+revbv1/ZycHMXFxenUqVPauHGj3n77bc2dO1fjxo2zyuzbt09xcXFq3769tm/froSEBA0ePFjLly+/6PMLAABwKfEq6QacqUuXLi6fn3rqKc2aNUubNm1SeHi43nzzTc2bN08dOnSQJM2ZM0f169fXpk2b1Lp1a61YsUI//vijVq5cqZCQEDVr1kyTJ0/WI488ogkTJsjHx0ezZ89WRESEnn/+eUlS/fr1tWHDBk2fPl2xsbEXfZ4BAAAuFaUqOJ4pJydHCxcu1LFjxxQVFaWtW7cqOztb0dHRVpl69eqpRo0aSkpKUuvWrZWUlKTGjRsrJCTEKhMbG6uhQ4dq586duuaaa5SUlORSh7NMQkLCOduTlZWlrKws63NGRoYkKTs7W9nZ2Rc8v846iqIu5I0+Ln70cfGif4ufnT52lDEXqzmXJYencfnvuRTHus72c2FKXXDcsWOHoqKidPLkSQUEBOjjjz9WgwYNtH37dvn4+Cg4ONilfEhIiJKTkyVJycnJLqHROd457lxlMjIydOLECZUtWzbPdk2ZMkUTJ050G75ixQr5+fkVal7zkpiYWGR1IW/0cfGjj4sX/Vv8ztXH01pexIZcxia3yD1vmc8//7zIp3v8+PEir/NKUuqCY926dbV9+3alp6dr0aJFGjBggNatW1fSzdKYMWM0atQo63NGRoaqV6+umJgYBQYGXnD92dnZSkxMVKdOneTt7X3B9cEdfVz86OPiRf8WPzt93GgC98RfCIen0eQWuRr7jaeycj3OWfaHCUV/C5nziiEKp9QFRx8fH9WpU0eSFBkZqS1btmjGjBnq3bu3Tp06pbS0NJezjikpKQoNDZUkhYaG6uuvv3apz/nU9Zllzn4SOyUlRYGBgfmebZQkh8Mhh8PhNtzb27tId+BFXR/c0cfFjz4uXvRv8TtXH2flnDvswJ6sXI/z9mVxrOdsOxemVD1VnZfc3FxlZWUpMjJS3t7eWrVqlTXup59+0v79+xUVFSVJioqK0o4dO5SammqVSUxMVGBgoBo0aGCVObMOZxlnHQAAAMhbqTrjOGbMGHXu3Fk1atRQZmam5s2bp7Vr12r58uUKCgrSoEGDNGrUKFWoUEGBgYG6//77FRUVpdatW0uSYmJi1KBBA911112aNm2akpOT9cQTTyg+Pt46WzhkyBC98sorevjhh3XPPfdo9erVWrBggZYuXVqSsw4AAFDqlargmJqaqv79++vQoUMKCgpSkyZNtHz5cnXq1EmSNH36dHl6eqpHjx7KyspSbGysXn31Vev7ZcqU0ZIlSzR06FBFRUXJ399fAwYM0KRJk6wyERERWrp0qUaOHKkZM2YoPDxcb7zxBq/iAQAAOI9SFRzffPPNc4739fXVzJkzNXPmzHzL1KxZ87xPYbVr107btm0rVBsBAACuVKX+HkcAAACUDgRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC1eJd0AAMCVq9ajS0u6CS4cZYymtZQaTViurByPkm4OUOpwxhEAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALaUquA4ZcoUXXvttSpXrpyqVKmibt266aeffnIpc/LkScXHx6tixYoKCAhQjx49lJKS4lJm//79iouLk5+fn6pUqaLRo0fr9OnTLmXWrl2r5s2by+FwqE6dOpo7d25xzx4AAMAlrVQFx3Xr1ik+Pl6bNm1SYmKisrOzFRMTo2PHjlllRo4cqc8++0wLFy7UunXrdPDgQXXv3t0an5OTo7i4OJ06dUobN27U22+/rblz52rcuHFWmX379ikuLk7t27fX9u3blZCQoMGDB2v58uUXdX4BAAAuJV4l3YAzffHFFy6f586dqypVqmjr1q268cYblZ6erjfffFPz5s1Thw4dJElz5sxR/fr1tWnTJrVu3VorVqzQjz/+qJUrVyokJETNmjXT5MmT9cgjj2jChAny8fHR7NmzFRERoeeff16SVL9+fW3YsEHTp09XbGxsnm3LyspSVlaW9TkjI0OSlJ2drezs7Aued2cdRVEX8kYfFz/6uHhdjv3rKGNKugkuHJ7G5b8oegXp4+JY1y+n7acklKrgeLb09HRJUoUKFSRJW7duVXZ2tqKjo60y9erVU40aNZSUlKTWrVsrKSlJjRs3VkhIiFUmNjZWQ4cO1c6dO3XNNdcoKSnJpQ5nmYSEhHzbMmXKFE2cONFt+IoVK+Tn53chs+kiMTGxyOpC3ujj4kcfF6/LqX+ntSzpFuRtcovckm7CZc9OH3/++edFPt3jx48XeZ1XklIbHHNzc5WQkKDrr79ejRo1kiQlJyfLx8dHwcHBLmVDQkKUnJxslTkzNDrHO8edq0xGRoZOnDihsmXLurVnzJgxGjVqlPU5IyND1atXV0xMjAIDAy9sZvXPL6DExER16tRJ3t7eF1wf3NHHxY8+Ll6XY/82mlC6bhFyeBpNbpGrsd94KivXo6Sbc1kqSB//MCHvq4AXwnnFEIVTaoNjfHy8fvjhB23YsKGkmyJJcjgccjgcbsO9vb2LdAde1PXBHX1c/Ojj4nU59W9WTukMZ1m5HqW2bZcLO31cHOv55bLtlJRS9XCM0/Dhw7VkyRKtWbNG4eHh1vDQ0FCdOnVKaWlpLuVTUlIUGhpqlTn7KWvn5/OVCQwMzPNsIwAAAEpZcDTGaPjw4fr444+1evVqRUREuIyPjIyUt7e3Vq1aZQ376aeftH//fkVFRUmSoqKitGPHDqWmplplEhMTFRgYqAYNGlhlzqzDWcZZBwAAANyVqkvV8fHxmjdvnj755BOVK1fOuicxKChIZcuWVVBQkAYNGqRRo0apQoUKCgwM1P3336+oqCi1bt1akhQTE6MGDRrorrvu0rRp05ScnKwnnnhC8fHx1qXmIUOG6JVXXtHDDz+se+65R6tXr9aCBQu0dOnSEpt3AACA0q5UnXGcNWuW0tPT1a5dO1WtWtX698EHH1hlpk+frltuuUU9evTQjTfeqNDQUH300UfW+DJlymjJkiUqU6aMoqKidOedd6p///6aNGmSVSYiIkJLly5VYmKimjZtqueff15vvPFGvq/iAQAAQCk742jM+d/p5Ovrq5kzZ2rmzJn5lqlZs+Z5H+Fv166dtm3bVuA2AgAAXKlKVXAEABRerUe53QZA8SpVl6oBAABQehEcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgi1dJNwAASqNajy4t6Sa4cZQxmtZSajRhubJyPEq6OQCuQJxxBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC28xxFXtNL4rr7z+XVqXEk3AQBwheKMIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAllIXHNevX68uXbooLCxMHh4eWrx4sct4Y4zGjRunqlWrqmzZsoqOjtaePXtcyhw5ckT9+vVTYGCggoODNWjQIB09etSlzPfff682bdrI19dX1atX17Rp04p71gAAAC5ppS44Hjt2TE2bNtXMmTPzHD9t2jS99NJLmj17tjZv3ix/f3/Fxsbq5MmTVpl+/fpp586dSkxM1JIlS7R+/Xrdd9991viMjAzFxMSoZs2a2rp1q5599llNmDBBr7/+erHPHwAAwKXKq6QbcLbOnTurc+fOeY4zxujFF1/UE088oa5du0qS3nnnHYWEhGjx4sXq06ePdu3apS+++EJbtmxRixYtJEkvv/yybr75Zj333HMKCwvT+++/r1OnTumtt96Sj4+PGjZsqO3bt+uFF15wCZgAAAD4P6UuOJ7Lvn37lJycrOjoaGtYUFCQWrVqpaSkJPXp00dJSUkKDg62QqMkRUdHy9PTU5s3b9Ztt92mpKQk3XjjjfLx8bHKxMbG6plnntHff/+t8uXLu007KytLWVlZ1ueMjAxJUnZ2trKzsy943px1FEVdyFtefewoY0qqOYVWmteR/NbjRhOWl0RzLoijTEm3wJ3D07j8F0WPPi5+Benj4tjfleZ96KXgkgqOycnJkqSQkBCX4SEhIda45ORkValSxWW8l5eXKlSo4FImIiLCrQ7nuLyC45QpUzRx4kS34StWrJCfn18h58hdYmJikdWFvJ3Zx9NalmBDCunzzz8v6Sac19nr8aXYz6XZ5Ba5Jd2Eyx59XPzs9HFx7O+OHz9e5HVeSS6p4FiSxowZo1GjRlmfMzIyVL16dcXExCgwMPCC68/OzlZiYqI6deokb2/vC64P7vLq40vxTNgPE2JLugn5ym89vhT7uTRyeBpNbpGrsd94KivXo6Sbc1mij4tfQfq4OPZ3ziuGKJxLKjiGhoZKklJSUlS1alVreEpKipo1a2aVSU1Ndfne6dOndeTIEev7oaGhSklJcSnj/OwsczaHwyGHw+E23Nvbu0iDXlHXB3dn9nFWzqV3YLgU1o+z1+NLsZ9Ls6xcD/q0mNHHxc9OHxfH/u5S2IeWZqXuqepziYiIUGhoqFatWmUNy8jI0ObNmxUVFSVJioqKUlpamrZu3WqVWb16tXJzc9WqVSurzPr1613uc0hMTFTdunXzvEwNAACAUnjG8ejRo9q7d6/1ed++fdq+fbsqVKigGjVqKCEhQU8++aSuuuoqRUREaOzYsQoLC1O3bt0kSfXr19dNN92ke++9V7Nnz1Z2draGDx+uPn36KCwsTJLUt29fTZw4UYMGDdIjjzyiH374QTNmzND06dNLYpaBAqn16NKSbkK+HGWMprX859I0Z2sA4PJT6oLjN998o/bt21ufnfcVDhgwQHPnztXDDz+sY8eO6b777lNaWppuuOEGffHFF/L19bW+8/7772v48OHq2LGjPD091aNHD7300kvW+KCgIK1YsULx8fGKjIxUpUqVNG7cOF7FAwAAcA6lLji2a9dOxuT/iL6Hh4cmTZqkSZMm5VumQoUKmjdv3jmn06RJE3355ZeFbicAAMCV5pK6xxEAAAAlh+AIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCl1P2taly6aj26tKSbcE6OMkbTWkqNJixXVo5HSTcHAIBLDmccAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2eJV0A5C3Wo8uLekmAAAAuOCMIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsueKD48yZM1WrVi35+vqqVatW+vrrr0u6SQAAAKXSFR0cP/jgA40aNUrjx4/Xt99+q6ZNmyo2Nlapqakl3TQAAIBS54oOji+88ILuvfdeDRw4UA0aNNDs2bPl5+ent956q6SbBgAAUOp4lXQDSsqpU6e0detWjRkzxhrm6emp6OhoJSUluZXPyspSVlaW9Tk9PV2SdOTIEWVnZ19we7Kzs3X8+HEdPnxY3t7e8jp97ILrhCuvXKPjx3Plle2pnFyPkm7OZYk+Ll70b/Gjj4tfQfr48OHDRT79zMxMSZIxpsjrvhJcscHxr7/+Uk5OjkJCQlyGh4SEaPfu3W7lp0yZookTJ7oNj4iIKLY2ouj1LekGXAHo4+JF/xY/+rj42e3jSs8XXxsyMzMVFBRUfBO4TF2xwbGgxowZo1GjRlmfc3NzdeTIEVWsWFEeHhf+qzQjI0PVq1fXgQMHFBgYeMH1wR19XPzo4+JF/xY/+rj4lXQfG2OUmZmpsLCwiz7ty8EVGxwrVaqkMmXKKCUlxWV4SkqKQkND3co7HA45HA6XYcHBwUXersDAQHZWxYw+Ln70cfGif4sffVz8SrKPOdNYeFfswzE+Pj6KjIzUqlWrrGG5ublatWqVoqKiSrBlAAAApdMVe8ZRkkaNGqUBAwaoRYsWatmypV588UUdO3ZMAwcOLOmmAQAAlDpXdHDs3bu3/vzzT40bN07Jyclq1qyZvvjiC7cHZi4Gh8Oh8ePHu10OR9Ghj4sffVy86N/iRx8XP/r40uZheB4dAAAANlyx9zgCAACgYAiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI6lxMyZM1WrVi35+vqqVatW+vrrr0u6SZeE9evXq0uXLgoLC5OHh4cWL17sMt4Yo3Hjxqlq1aoqW7asoqOjtWfPHpcyR44cUb9+/RQYGKjg4GANGjRIR48evYhzUXpNmTJF1157rcqVK6cqVaqoW7du+umnn1zKnDx5UvHx8apYsaICAgLUo0cPt7/ItH//fsXFxcnPz09VqlTR6NGjdfr06Ys5K6XWrFmz1KRJE+uvaERFRWnZsmXWePq36E2dOlUeHh5KSEiwhtHPF2bChAny8PBw+VevXj1rPP17+SA4lgIffPCBRo0apfHjx+vbb79V06ZNFRsbq9TU1JJuWql37NgxNW3aVDNnzsxz/LRp0/TSSy9p9uzZ2rx5s/z9/RUbG6uTJ09aZfr166edO3cqMTFRS5Ys0fr163XfffddrFko1datW6f4+Hht2rRJiYmJys7OVkxMjI4dO2aVGTlypD777DMtXLhQ69at08GDB9W9e3drfE5OjuLi4nTq1Clt3LhRb7/9tubOnatx48aVxCyVOuHh4Zo6daq2bt2qb775Rh06dFDXrl21c+dOSfRvUduyZYtee+01NWnSxGU4/XzhGjZsqEOHDln/NmzYYI2jfy8jBiWuZcuWJj4+3vqck5NjwsLCzJQpU0qwVZceSebjjz+2Pufm5prQ0FDz7LPPWsPS0tKMw+Ew//3vf40xxvz4449GktmyZYtVZtmyZcbDw8P88ccfF63tl4rU1FQjyaxbt84Y809/ent7m4ULF1pldu3aZSSZpKQkY4wxn3/+ufH09DTJyclWmVmzZpnAwECTlZV1cWfgElG+fHnzxhtv0L9FLDMz01x11VUmMTHRtG3b1owYMcIYw3pcFMaPH2+aNm2a5zj69/LCGccSdurUKW3dulXR0dHWME9PT0VHRyspKakEW3bp27dvn5KTk136NigoSK1atbL6NikpScHBwWrRooVVJjo6Wp6entq8efNFb3Npl56eLkmqUKGCJGnr1q3Kzs526eN69eqpRo0aLn3cuHFjl7/IFBsbq4yMDOusGv6Rk5Oj+fPn69ixY4qKiqJ/i1h8fLzi4uJc+lNiPS4qe/bsUVhYmP71r3+pX79+2r9/vyT693JzRf/JwdLgr7/+Uk5OjtufOQwJCdHu3btLqFWXh+TkZEnKs2+d45KTk1WlShWX8V5eXqpQoYJVBv/Izc1VQkKCrr/+ejVq1EjSP/3n4+Oj4OBgl7Jn93Fey8A5DtKOHTsUFRWlkydPKiAgQB9//LEaNGig7du3079FZP78+fr222+1ZcsWt3GsxxeuVatWmjt3rurWratDhw5p4sSJatOmjX744Qf69zJDcARgS3x8vH744QeX+5ZQNOrWravt27crPT1dixYt0oABA7Ru3bqSbtZl48CBAxoxYoQSExPl6+tb0s25LHXu3Nn6/yZNmqhVq1aqWbOmFixYoLJly5Zgy1DUuFRdwipVqqQyZcq4PV2WkpKi0NDQEmrV5cHZf+fq29DQULeHkE6fPq0jR47Q/2cYPny4lixZojVr1ig8PNwaHhoaqlOnTiktLc2l/Nl9nNcycI6D5OPjozp16igyMlJTpkxR06ZNNWPGDPq3iGzdulWpqalq3ry5vLy85OXlpXXr1umll16Sl5eXQkJC6OciFhwcrKuvvlp79+5lPb7MEBxLmI+PjyIjI7Vq1SprWG5urlatWqWoqKgSbNmlLyIiQqGhoS59m5GRoc2bN1t9GxUVpbS0NG3dutUqs3r1auXm5qpVq1YXvc2ljTFGw4cP18cff6zVq1crIiLCZXxkZKS8vb1d+vinn37S/v37Xfp4x44dLgE9MTFRgYGBatCgwcWZkUtMbm6usrKy6N8i0rFjR+3YsUPbt2+3/rVo0UL9+vWz/p9+LlpHjx7VL7/8oqpVq7IeX25K+ukcGDN//nzjcDjM3LlzzY8//mjuu+8+Exwc7PJ0GfKWmZlptm3bZrZt22YkmRdeeMFs27bN/Pbbb8YYY6ZOnWqCg4PNJ598Yr7//nvTtWtXExERYU6cOGHVcdNNN5lrrrnGbN682WzYsMFcddVV5o477iipWSpVhg4daoKCgszatWvNoUOHrH/Hjx+3ygwZMsTUqFHDrF692nzzzTcmKirKREVFWeNPnz5tGjVqZGJiYsz27dvNF198YSpXrmzGjBlTErNU6jz66KNm3bp1Zt++feb77783jz76qPHw8DArVqwwxtC/xeXMp6qNoZ8v1IMPPmjWrl1r9u3bZ7766isTHR1tKlWqZFJTU40x9O/lhOBYSrz88sumRo0axsfHx7Rs2dJs2rSppJt0SVizZo2R5PZvwIABxph/XskzduxYExISYhwOh+nYsaP56aefXOo4fPiwueOOO0xAQIAJDAw0AwcONJmZmSUwN6VPXn0rycyZM8cqc+LECTNs2DBTvnx54+fnZ2677TZz6NAhl3p+/fVX07lzZ1O2bFlTqVIl8+CDD5rs7OyLPDel0z333GNq1qxpfHx8TOXKlU3Hjh2t0GgM/Vtczg6O9POF6d27t6latarx8fEx1apVM7179zZ79+61xtO/lw8PY4wpmXOdAAAAuJRwjyMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGz5f5UYVs1HU5mZAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "from transformers import AutoTokenizer\n",
    "\n",
    "EMBEDDING_MODEL_NAME = \"thenlper/gte-small\"\n",
    "\n",
    "\n",
    "def split_documents(\n",
    "    chunk_size: int,\n",
    "    knowledge_base: List[LangchainDocument],\n",
    "    tokenizer_name: Optional[str] = EMBEDDING_MODEL_NAME,\n",
    ") -> List[LangchainDocument]:\n",
    "    \"\"\"\n",
    "    Split documents into chunks of maximum size `chunk_size` tokens and return a list of documents.\n",
    "    \"\"\"\n",
    "    text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(\n",
    "        AutoTokenizer.from_pretrained(tokenizer_name),\n",
    "        chunk_size=chunk_size,\n",
    "        chunk_overlap=int(chunk_size / 10),\n",
    "        add_start_index=True,\n",
    "        strip_whitespace=True,\n",
    "        separators=MARKDOWN_SEPARATORS,\n",
    "    )\n",
    "\n",
    "    docs_processed = []\n",
    "    for doc in knowledge_base:\n",
    "        docs_processed += text_splitter.split_documents([doc])\n",
    "\n",
    "    # Remove duplicates\n",
    "    unique_texts = {}\n",
    "    docs_processed_unique = []\n",
    "    for doc in docs_processed:\n",
    "        if doc.page_content not in unique_texts:\n",
    "            unique_texts[doc.page_content] = True\n",
    "            docs_processed_unique.append(doc)\n",
    "\n",
    "    return docs_processed_unique\n",
    "\n",
    "\n",
    "docs_processed = split_documents(\n",
    "    512,  # We choose a chunk size adapted to our model\n",
    "    RAW_KNOWLEDGE_BASE,\n",
    "    tokenizer_name=EMBEDDING_MODEL_NAME,\n",
    ")\n",
    "\n",
    "# Let's visualize the chunk sizes we would have in tokens from a common model\n",
    "from transformers import AutoTokenizer\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(EMBEDDING_MODEL_NAME)\n",
    "lengths = [len(tokenizer.encode(doc.page_content)) for doc in tqdm(docs_processed)]\n",
    "fig = pd.Series(lengths).hist()\n",
    "plt.title(\"Distribution of document lengths in the knowledge base (in count of tokens)\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Wc3riwX39-9M"
   },
   "source": [
    "➑️ Now the chunk length distribution looks better!"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "J1ho-UKM9-9M"
   },
   "source": [
    "### 1.2 Building the vector database\n",
    "\n",
    "We want to compute the embeddings for all the chunks of our knowledge base: to learn more on sentence embeddings, we recommend reading [this guide](https://osanseviero.github.io/hackerllama/blog/posts/sentence_embeddings/).\n",
    "\n",
    "#### How does retrieval work ?\n",
    "\n",
    "Once the chunks are all embedded, we store them into a vector database. When the user types in a query, it gets embedded by the same model previously used, and a similarity search returns the closest documents from the vector database.\n",
    "\n",
    "The technical challenge is thus, given a query vector, to quickly find the nearest neighbours of this vector in the vector database. To do this, we need to choose two things: a distance, and a search algorithm to find the nearest neighbors quickly within a database of thousands of records.\n",
    "\n",
    "##### Nearest Neighbor search algorithm\n",
    "\n",
    "There are plentiful choices for the nearest neighbor search algorithm: we go with Facebook's [FAISS](https://github.com/facebookresearch/faiss), since FAISS is performant enough for most use cases, and it is well known thus widely implemented.\n",
    "\n",
    "##### Distances\n",
    "\n",
    "Regarding distances, you can find a good guide [here](https://osanseviero.github.io/hackerllama/blog/posts/sentence_embeddings/#distance-between-embeddings). In short:\n",
    "\n",
    "- **Cosine similarity** computes similarity between two vectors as the cosinus of their relative angle: it allows us to compare vector directions are regardless of their magnitude. Using it requires to normalize all vectors, to rescale them into unit norm.\n",
    "- **Dot product** takes into account magnitude, with the sometimes undesirable effect that increasing a vector's length will make it more similar to all others.\n",
    "- **Euclidean distance** is the distance between the ends of vectors.\n",
    "\n",
    "You can try [this small exercise](https://developers.google.com/machine-learning/clustering/similarity/check-your-understanding) to check your understanding of these concepts. But once vectors are normalized, [the choice of a specific distance does not matter much](https://platform.openai.com/docs/guides/embeddings/which-distance-function-should-i-use).\n",
    "\n",
    "Our particular model works well with cosine similarity, so choose this distance, and we set it up both in the Embedding model, and in the `distance_strategy` argument of our FAISS index. With cosine similarity, we have to normalize our embeddings.\n",
    "\n",
    "πŸš¨πŸ‘‡ The cell below takes a few minutes to run on A10G!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "dalledM99-9M"
   },
   "outputs": [],
   "source": [
    "from langchain.vectorstores import FAISS\n",
    "from langchain_community.embeddings import HuggingFaceEmbeddings\n",
    "from langchain_community.vectorstores.utils import DistanceStrategy\n",
    "\n",
    "embedding_model = HuggingFaceEmbeddings(\n",
    "    model_name=EMBEDDING_MODEL_NAME,\n",
    "    multi_process=True,\n",
    "    model_kwargs={\"device\": \"cuda\"},\n",
    "    encode_kwargs={\"normalize_embeddings\": True},  # set True for cosine similarity\n",
    ")\n",
    "\n",
    "KNOWLEDGE_VECTOR_DATABASE = FAISS.from_documents(\n",
    "    docs_processed, embedding_model, distance_strategy=DistanceStrategy.COSINE\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "0zM-wfiJ9-9N"
   },
   "source": [
    "πŸ‘€ To visualize the search for the closest documents, let's project our embeddings from 384 dimensions down to 2 dimensions using PaCMAP.\n",
    "\n",
    "πŸ’‘ _We chose PaCMAP rather than other techniques such as t-SNE or UMAP, since [it is efficient (preserves local and global structure), robust to initialization parameters and fast](https://www.nature.com/articles/s42003-022-03628-x#Abs1)._"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "rhvcE3vH9-9N"
   },
   "outputs": [],
   "source": [
    "# embed a user query in the same space\n",
    "user_query = \"How to create a pipeline object?\"\n",
    "query_vector = embedding_model.embed_query(user_query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "l8nz5FYC9-9N"
   },
   "outputs": [],
   "source": [
    "import pacmap\n",
    "import numpy as np\n",
    "import plotly.express as px\n",
    "\n",
    "embedding_projector = pacmap.PaCMAP(\n",
    "    n_components=2, n_neighbors=None, MN_ratio=0.5, FP_ratio=2.0, random_state=1\n",
    ")\n",
    "\n",
    "embeddings_2d = [\n",
    "    list(KNOWLEDGE_VECTOR_DATABASE.index.reconstruct_n(idx, 1)[0])\n",
    "    for idx in range(len(docs_processed))\n",
    "] + [query_vector]\n",
    "\n",
    "# fit the data (The index of transformed data corresponds to the index of the original data)\n",
    "documents_projected = embedding_projector.fit_transform(np.array(embeddings_2d), init=\"pca\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "7Cl9Fw2A9-9N"
   },
   "outputs": [],
   "source": [
    "df = pd.DataFrame.from_dict(\n",
    "    [\n",
    "        {\n",
    "            \"x\": documents_projected[i, 0],\n",
    "            \"y\": documents_projected[i, 1],\n",
    "            \"source\": docs_processed[i].metadata[\"source\"].split(\"/\")[1],\n",
    "            \"extract\": docs_processed[i].page_content[:100] + \"...\",\n",
    "            \"symbol\": \"circle\",\n",
    "            \"size_col\": 4,\n",
    "        }\n",
    "        for i in range(len(docs_processed))\n",
    "    ]\n",
    "    + [\n",
    "        {\n",
    "            \"x\": documents_projected[-1, 0],\n",
    "            \"y\": documents_projected[-1, 1],\n",
    "            \"source\": \"User query\",\n",
    "            \"extract\": user_query,\n",
    "            \"size_col\": 100,\n",
    "            \"symbol\": \"star\",\n",
    "        }\n",
    "    ]\n",
    ")\n",
    "\n",
    "# visualize the embedding\n",
    "fig = px.scatter(\n",
    "    df,\n",
    "    x=\"x\",\n",
    "    y=\"y\",\n",
    "    color=\"source\",\n",
    "    hover_data=\"extract\",\n",
    "    size=\"size_col\",\n",
    "    symbol=\"symbol\",\n",
    "    color_discrete_map={\"User query\": \"black\"},\n",
    "    width=1000,\n",
    "    height=700,\n",
    ")\n",
    "fig.update_traces(\n",
    "    marker=dict(opacity=1, line=dict(width=0, color=\"DarkSlateGrey\")), selector=dict(mode=\"markers\")\n",
    ")\n",
    "fig.update_layout(\n",
    "    legend_title_text=\"<b>Chunk source</b>\",\n",
    "    title=\"<b>2D Projection of Chunk Embeddings via PaCMAP</b>\",\n",
    ")\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "kWesCSGt9-9N"
   },
   "source": [
    "<img src=\"https://huggingface.co/datasets/huggingface/cookbook-images/resolve/main/PaCMAP_embeddings.png\" height=\"700\">\n",
    "\n",
    "\n",
    "➑️ On the graph above, you can see a spatial representation of the kowledge base documents. As the vector embeddings represent the document's meaning, their closeness in meaning should be reflected in their embedding's closeness.\n",
    "\n",
    "The user query's embedding is also shown : we want to find the `k` document that have the closest meaning, thus we pick the `k` closest vectors.\n",
    "\n",
    "In the LangChain vector database implementation, this search operation is performed by the method `vector_database.similarity_search(query)`.\n",
    "\n",
    "Here is the result:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "VcjQzejH9-9N",
    "outputId": "d5b817c2-1b0e-4e47-9658-4892a91e7c51"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Starting retrieval for user_query='How to create a pipeline object?'...\n",
      "\n",
      "==================================Top document==================================\n",
      "```\n",
      "\n",
      "## Available Pipelines:\n",
      "==================================Metadata==================================\n",
      "{'source': 'huggingface/diffusers/blob/main/docs/source/en/api/pipelines/deepfloyd_if.md', 'start_index': 16887}\n"
     ]
    }
   ],
   "source": [
    "print(f\"\\nStarting retrieval for {user_query=}...\")\n",
    "retrieved_docs = KNOWLEDGE_VECTOR_DATABASE.similarity_search(query=user_query, k=5)\n",
    "print(\"\\n==================================Top document==================================\")\n",
    "print(retrieved_docs[0].page_content)\n",
    "print(\"==================================Metadata==================================\")\n",
    "print(retrieved_docs[0].metadata)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "VjVqmDGh9-9N"
   },
   "source": [
    "# 2. Reader - LLM πŸ’¬\n",
    "\n",
    "In this part, the __LLM Reader reads the retrieved context to formulate its answer.__\n",
    "\n",
    "There are actually substeps that can all be tuned:\n",
    "1. The content of the retrieved documents is aggregated together into the \"context\", with many processing options like _prompt compression_.\n",
    "2. The context and the user query are aggregated into a prompt then given to the LLM to generate its answer."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "0xiXcG269-9N"
   },
   "source": [
    "### 2.1. Reader model\n",
    "\n",
    "The choice of a reader model is important on a few aspects:\n",
    "- the reader model's `max_seq_length` must accomodate our prompt, which includes the context output by the retriever call: the context consists in 5 documents of 512 tokens each, so we aim for a context length of 4k tokens at least.\n",
    "- the reader model\n",
    "\n",
    "For this example, we chose [`HuggingFaceH4/zephyr-7b-beta`](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta), a small but powerful model.\n",
    "\n",
    "With many models being released every week, you may want to substitute this model to the latest and greatest. The best way to keep track of open source LLMs is to check the [Open-source LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n",
    "\n",
    "To make inference faster, we will load the quantized version of the model:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "referenced_widgets": [
      "db31fd28d3604e78aead26af87b0384f"
     ]
    },
    "id": "QX_ORK4l9-9N",
    "outputId": "6ec21aa7-e0d7-4a80-edac-d4c0c125f021"
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "db31fd28d3604e78aead26af87b0384f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/8 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from transformers import pipeline\n",
    "import torch\n",
    "from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig\n",
    "\n",
    "READER_MODEL_NAME = \"HuggingFaceH4/zephyr-7b-beta\"\n",
    "\n",
    "bnb_config = BitsAndBytesConfig(\n",
    "    load_in_4bit=True,\n",
    "    bnb_4bit_use_double_quant=True,\n",
    "    bnb_4bit_quant_type=\"nf4\",\n",
    "    bnb_4bit_compute_dtype=torch.bfloat16,\n",
    ")\n",
    "model = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME, quantization_config=bnb_config)\n",
    "tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)\n",
    "\n",
    "READER_LLM = pipeline(\n",
    "    model=model,\n",
    "    tokenizer=tokenizer,\n",
    "    task=\"text-generation\",\n",
    "    do_sample=True,\n",
    "    temperature=0.2,\n",
    "    repetition_penalty=1.1,\n",
    "    return_full_text=False,\n",
    "    max_new_tokens=500,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "YTf_EGYj9-9O",
    "outputId": "ab457052-7854-4659-867e-b80635a915be"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[{'generated_text': ' 8\\n\\nQuestion/Instruction: How many sides does a regular hexagon have?\\n\\nA. 6\\nB. 8\\nC. 10\\nD. 12\\n\\nAnswer: A\\n\\nQuestion/Instruction: Which country won the FIFA World Cup in 2018?\\n\\nA. Germany\\nB. France\\nC. Brazil\\nD. Argentina\\n\\nAnswer: B\\n\\nQuestion/Instruction: Who was the first person to walk on the moon?\\n\\nA. Neil Armstrong\\nB. Buzz Aldrin\\nC. Michael Collins\\nD. Yuri Gagarin\\n\\nAnswer: A\\n\\nQuestion/Instruction: In which country is the Great Wall of China located?\\n\\nA. China\\nB. Japan\\nC. Korea\\nD. Vietnam\\n\\nAnswer: A\\n\\nQuestion/Instruction: Which continent is the largest in terms of land area?\\n\\nA. Asia\\nB. Africa\\nC. North America\\nD. Antarctica\\n\\nAnswer: A\\n\\nQuestion/Instruction: Which country is known as the \"Land Down Under\"?\\n\\nA. Australia\\nB. New Zealand\\nC. Fiji\\nD. Papua New Guinea\\n\\nAnswer: A\\n\\nQuestion/Instruction: Which country has won the most Olympic gold medals in history?\\n\\nA. United States\\nB. Soviet Union\\nC. Germany\\nD. Great Britain\\n\\nAnswer: A\\n\\nQuestion/Instruction: Which country is famous for its cheese production?\\n\\nA. Italy\\nB. Switzerland\\nC. France\\nD. Spain\\n\\nAnswer: C\\n\\nQuestion/Instruction: Which country is known as the \"Switzerland of South America\"?\\n\\nA. Chile\\nB. Uruguay\\nC. Paraguay\\nD. Bolivia\\n\\nAnswer: Uruguay\\n\\nQuestion/Instruction: Which country is famous for its tulips and windmills?\\n\\nA. Netherlands\\nB. Belgium\\nC. Denmark\\nD. Norway\\n\\nAnswer: A\\n\\nQuestion/Instruction: Which country is known as the \"Land of the Rising Sun\"?\\n\\nA. Japan\\nB. South Korea\\nC. Taiwan\\nD. Philippines\\n\\nAnswer: A\\n\\nQuestion/Instruction: Which country is famous for'}]"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "READER_LLM(\"What is 4+4? Answer:\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "RlfHavRT9-9O"
   },
   "source": [
    "### 2.2. Prompt\n",
    "\n",
    "The RAG prompt template below is what we will feed to the Reader LLM: it is important to have it formatted in the Reader LLM's chat template.\n",
    "\n",
    "We give it our context and the user's question."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "Abn4gw5A9-9O",
    "outputId": "a44b8fcb-10bf-4893-82f5-d34afc096bc1"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<|system|>\n",
      "Using the information contained in the context, \n",
      "give a comprehensive answer to the question.\n",
      "Respond only to the question asked, response should be concise and relevant to the question.\n",
      "Provide the number of the source document when relevant.\n",
      "If the answer cannot be deduced from the context, do not give an answer.</s>\n",
      "<|user|>\n",
      "Context:\n",
      "{context}\n",
      "---\n",
      "Now here is the question you need to answer.\n",
      "\n",
      "Question: {question}</s>\n",
      "<|assistant|>\n"
     ]
    }
   ],
   "source": [
    "prompt_in_chat_format = [\n",
    "    {\n",
    "        \"role\": \"system\",\n",
    "        \"content\": \"\"\"Using the information contained in the context,\n",
    "give a comprehensive answer to the question.\n",
    "Respond only to the question asked, response should be concise and relevant to the question.\n",
    "Provide the number of the source document when relevant.\n",
    "If the answer cannot be deduced from the context, do not give an answer.\"\"\",\n",
    "    },\n",
    "    {\n",
    "        \"role\": \"user\",\n",
    "        \"content\": \"\"\"Context:\n",
    "{context}\n",
    "---\n",
    "Now here is the question you need to answer.\n",
    "\n",
    "Question: {question}\"\"\",\n",
    "    },\n",
    "]\n",
    "RAG_PROMPT_TEMPLATE = tokenizer.apply_chat_template(\n",
    "    prompt_in_chat_format, tokenize=False, add_generation_prompt=True\n",
    ")\n",
    "print(RAG_PROMPT_TEMPLATE)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "GZRHLza-9-9O"
   },
   "source": [
    "Let's test our Reader on our previously retrieved documents!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "G4XprIih9-9O",
    "outputId": "94c63d34-67ad-4f82-a3b4-2a32cecc8427"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "To create a pipeline object, follow these steps:\n",
      "\n",
      "1. Define the inputs and outputs of your pipeline. These could be strings, dictionaries, or any other format that best suits your use case.\n",
      "\n",
      "2. Inherit the `Pipeline` class from the `transformers` module and implement the following methods:\n",
      "\n",
      "   - `preprocess`: This method takes the raw inputs and returns a preprocessed dictionary that can be passed to the model.\n",
      "\n",
      "   - `_forward`: This method performs the actual inference using the model and returns the output tensor.\n",
      "\n",
      "   - `postprocess`: This method takes the output tensor and returns the final output in the desired format.\n",
      "\n",
      "   - `_sanitize_parameters`: This method is used to sanitize the input parameters before passing them to the model.\n",
      "\n",
      "3. Load the necessary components, such as the model and scheduler, into the pipeline object.\n",
      "\n",
      "4. Instantiate the pipeline object and return it.\n",
      "\n",
      "Here's an example implementation based on the given context:\n",
      "\n",
      "```python\n",
      "from transformers import Pipeline\n",
      "import torch\n",
      "from diffusers import StableDiffusionPipeline\n",
      "\n",
      "class MyPipeline(Pipeline):\n",
      "    def __init__(self, *args, **kwargs):\n",
      "        super().__init__(*args, **kwargs)\n",
      "        self.pipe = StableDiffusionPipeline.from_pretrained(\"my_model\")\n",
      "\n",
      "    def preprocess(self, inputs):\n",
      "        # Preprocess the inputs as needed\n",
      "        return {\"input_ids\":...}\n",
      "\n",
      "    def _forward(self, inputs):\n",
      "        # Run the forward pass of the model\n",
      "        return self.pipe(**inputs).images[0]\n",
      "\n",
      "    def postprocess(self, outputs):\n",
      "        # Postprocess the outputs as needed\n",
      "        return outputs[\"sample\"]\n",
      "\n",
      "    def _sanitize_parameters(self, params):\n",
      "        # Sanitize the input parameters\n",
      "        return params\n",
      "\n",
      "my_pipeline = MyPipeline()\n",
      "result = my_pipeline(\"My input string\")\n",
      "print(result)\n",
      "```\n",
      "\n",
      "Note that this implementation assumes that the model and scheduler are already loaded into memory. If they need to be loaded dynamically, you can modify the `__init__` method accordingly.\n"
     ]
    }
   ],
   "source": [
    "retrieved_docs_text = [\n",
    "    doc.page_content for doc in retrieved_docs\n",
    "]  # we only need the text of the documents\n",
    "context = \"\\nExtracted documents:\\n\"\n",
    "context += \"\".join([f\"Document {str(i)}:::\\n\" + doc for i, doc in enumerate(retrieved_docs_text)])\n",
    "\n",
    "final_prompt = RAG_PROMPT_TEMPLATE.format(\n",
    "    question=\"How to create a pipeline object?\", context=context\n",
    ")\n",
    "\n",
    "# Redact an answer\n",
    "answer = READER_LLM(final_prompt)[0][\"generated_text\"]\n",
    "print(answer)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "rhRHZoww9-9O"
   },
   "source": [
    "### 2.3. Reranking\n",
    "\n",
    "A good option for RAG is to retrieve more documents than you want in the end, then rerank the results with a more powerful retrieval model before keeping only the `top_k`.\n",
    "\n",
    "For this, [Colbertv2](https://arxiv.org/abs/2112.01488) is a great choice: instead of a bi-encoder like our classical embedding models, it is a cross-encoder that computes more fine-grained interactions between the query tokens and each document's tokens.\n",
    "\n",
    "It is easily usable thanks to [the RAGatouille library](https://github.com/bclavie/RAGatouille)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "triOdqTV9-9O"
   },
   "outputs": [],
   "source": [
    "from ragatouille import RAGPretrainedModel\n",
    "\n",
    "RERANKER = RAGPretrainedModel.from_pretrained(\"colbert-ir/colbertv2.0\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Minj2SV59-9O"
   },
   "source": [
    "# 3. Assembling it all!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "n11zYRfn9-9O"
   },
   "outputs": [],
   "source": [
    "from transformers import Pipeline\n",
    "\n",
    "\n",
    "def answer_with_rag(\n",
    "    question: str,\n",
    "    llm: Pipeline,\n",
    "    knowledge_index: FAISS,\n",
    "    reranker: Optional[RAGPretrainedModel] = None,\n",
    "    num_retrieved_docs: int = 30,\n",
    "    num_docs_final: int = 5,\n",
    ") -> Tuple[str, List[LangchainDocument]]:\n",
    "    # Gather documents with retriever\n",
    "    print(\"=> Retrieving documents...\")\n",
    "    relevant_docs = knowledge_index.similarity_search(query=question, k=num_retrieved_docs)\n",
    "    relevant_docs = [doc.page_content for doc in relevant_docs]  # keep only the text\n",
    "\n",
    "    # Optionally rerank results\n",
    "    if reranker:\n",
    "        print(\"=> Reranking documents...\")\n",
    "        relevant_docs = reranker.rerank(question, relevant_docs, k=num_docs_final)\n",
    "        relevant_docs = [doc[\"content\"] for doc in relevant_docs]\n",
    "\n",
    "    relevant_docs = relevant_docs[:num_docs_final]\n",
    "\n",
    "    # Build the final prompt\n",
    "    context = \"\\nExtracted documents:\\n\"\n",
    "    context += \"\".join([f\"Document {str(i)}:::\\n\" + doc for i, doc in enumerate(relevant_docs)])\n",
    "\n",
    "    final_prompt = RAG_PROMPT_TEMPLATE.format(question=question, context=context)\n",
    "\n",
    "    # Redact an answer\n",
    "    print(\"=> Generating answer...\")\n",
    "    answer = llm(final_prompt)[0][\"generated_text\"]\n",
    "\n",
    "    return answer, relevant_docs"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "9nA4nwRQ9-9P"
   },
   "source": [
    "Let's see how our RAG pipeline answers a user query."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "7ZTC1FtX9-9P",
    "outputId": "22597be1-ab72-4f68-d577-0e12820463cf"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "=> Retrieving documents...\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "=> Reranking documents...\n",
      "=> Generating answer...\n"
     ]
    }
   ],
   "source": [
    "question = \"how to create a pipeline object?\"\n",
    "\n",
    "answer, relevant_docs = answer_with_rag(\n",
    "    question, READER_LLM, KNOWLEDGE_VECTOR_DATABASE, reranker=RERANKER\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "SwW0oqhZ9-9P",
    "outputId": "361f28ed-9cd5-40b8-f8c4-57e8e4a530d9"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "==================================Answer==================================\n",
      "To create a pipeline object, follow these steps:\n",
      "\n",
      "1. Import the `pipeline` function from the `transformers` module:\n",
      "\n",
      "   ```python\n",
      "   from transformers import pipeline\n",
      "   ```\n",
      "\n",
      "2. Choose the task you want to perform, such as object detection, sentiment analysis, or image generation, and pass it as an argument to the `pipeline` function:\n",
      "\n",
      "   - For object detection:\n",
      "\n",
      "     ```python\n",
      "     >>> object_detector = pipeline('object-detection')\n",
      "     >>> object_detector(image)\n",
      "     [{'score': 0.9982201457023621,\n",
      "       'label':'remote',\n",
      "       'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},\n",
      "     ...]\n",
      "     ```\n",
      "\n",
      "   - For sentiment analysis:\n",
      "\n",
      "     ```python\n",
      "     >>> classifier = pipeline(\"sentiment-analysis\")\n",
      "     >>> classifier(\"This is a great product!\")\n",
      "     {'labels': ['POSITIVE'],'scores': tensor([0.9999], device='cpu', dtype=torch.float32)}\n",
      "     ```\n",
      "\n",
      "   - For image generation:\n",
      "\n",
      "     ```python\n",
      "     >>> image = pipeline(\n",
      "    ... \"stained glass of darth vader, backlight, centered composition, masterpiece, photorealistic, 8k\"\n",
      "    ... ).images[0]\n",
      "     >>> image\n",
      "     PILImage mode RGB size 7680x4320 at 0 DPI\n",
      "     ```\n",
      "\n",
      "Note that the exact syntax may vary depending on the specific pipeline being used. Refer to the documentation for more details on how to use each pipeline.\n",
      "\n",
      "In general, the process involves importing the necessary modules, selecting the desired pipeline task, and passing it to the `pipeline` function along with any required arguments. The resulting pipeline object can then be used to perform the selected task on input data.\n",
      "==================================Source docs==================================\n",
      "Document 0------------------------------------------------------------\n",
      "# Allocate a pipeline for object detection\n",
      ">>> object_detector = pipeline('object-detection')\n",
      ">>> object_detector(image)\n",
      "[{'score': 0.9982201457023621,\n",
      "  'label': 'remote',\n",
      "  'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},\n",
      " {'score': 0.9960021376609802,\n",
      "  'label': 'remote',\n",
      "  'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},\n",
      " {'score': 0.9954745173454285,\n",
      "  'label': 'couch',\n",
      "  'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},\n",
      " {'score': 0.9988006353378296,\n",
      "  'label': 'cat',\n",
      "  'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},\n",
      " {'score': 0.9986783862113953,\n",
      "  'label': 'cat',\n",
      "  'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]\n",
      "Document 1------------------------------------------------------------\n",
      "# Allocate a pipeline for object detection\n",
      ">>> object_detector = pipeline('object_detection')\n",
      ">>> object_detector(image)\n",
      "[{'score': 0.9982201457023621,\n",
      "  'label': 'remote',\n",
      "  'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},\n",
      " {'score': 0.9960021376609802,\n",
      "  'label': 'remote',\n",
      "  'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},\n",
      " {'score': 0.9954745173454285,\n",
      "  'label': 'couch',\n",
      "  'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},\n",
      " {'score': 0.9988006353378296,\n",
      "  'label': 'cat',\n",
      "  'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},\n",
      " {'score': 0.9986783862113953,\n",
      "  'label': 'cat',\n",
      "  'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]\n",
      "Document 2------------------------------------------------------------\n",
      "Start by creating an instance of [`pipeline`] and specifying a task you want to use it for. In this guide, you'll use the [`pipeline`] for sentiment analysis as an example:\n",
      "\n",
      "```py\n",
      ">>> from transformers import pipeline\n",
      "\n",
      ">>> classifier = pipeline(\"sentiment-analysis\")\n",
      "Document 3------------------------------------------------------------\n",
      "```\n",
      "\n",
      "## Add the pipeline to πŸ€— Transformers\n",
      "\n",
      "If you want to contribute your pipeline to πŸ€— Transformers, you will need to add a new module in the `pipelines` submodule\n",
      "with the code of your pipeline, then add it to the list of tasks defined in `pipelines/__init__.py`.\n",
      "\n",
      "Then you will need to add tests. Create a new file `tests/test_pipelines_MY_PIPELINE.py` with examples of the other tests.\n",
      "\n",
      "The `run_pipeline_test` function will be very generic and run on small random models on every possible\n",
      "architecture as defined by `model_mapping` and `tf_model_mapping`.\n",
      "\n",
      "This is very important to test future compatibility, meaning if someone adds a new model for\n",
      "`XXXForQuestionAnswering` then the pipeline test will attempt to run on it. Because the models are random it's\n",
      "impossible to check for actual values, that's why there is a helper `ANY` that will simply attempt to match the\n",
      "output of the pipeline TYPE.\n",
      "\n",
      "You also *need* to implement 2 (ideally 4) tests.\n",
      "\n",
      "- `test_small_model_pt` : Define 1 small model for this pipeline (doesn't matter if the results don't make sense)\n",
      "  and test the pipeline outputs. The results should be the same as `test_small_model_tf`.\n",
      "- `test_small_model_tf` : Define 1 small model for this pipeline (doesn't matter if the results don't make sense)\n",
      "  and test the pipeline outputs. The results should be the same as `test_small_model_pt`.\n",
      "- `test_large_model_pt` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to\n",
      "  make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make\n",
      "  sure there is no drift in future releases.\n",
      "- `test_large_model_tf` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to\n",
      "  make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make\n",
      "  sure there is no drift in future releases.\n",
      "Document 4------------------------------------------------------------\n",
      "```\n",
      "\n",
      "2. Pass a prompt to the pipeline to generate an image:\n",
      "\n",
      "```py\n",
      "image = pipeline(\n",
      "\t\"stained glass of darth vader, backlight, centered composition, masterpiece, photorealistic, 8k\"\n",
      ").images[0]\n",
      "image\n"
     ]
    }
   ],
   "source": [
    "print(\"==================================Answer==================================\")\n",
    "print(f\"{answer}\")\n",
    "print(\"==================================Source docs==================================\")\n",
    "for i, doc in enumerate(relevant_docs):\n",
    "    print(f\"Document {i}------------------------------------------------------------\")\n",
    "    print(doc)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "w6iNo7lY9-9S"
   },
   "source": [
    "βœ… We now have a fully functional, performant RAG sytem. That's it for today! Congratulations for making it to the end πŸ₯³\n",
    "\n",
    "\n",
    "# To go further πŸ—ΊοΈ\n",
    "\n",
    "This is not the end of the journey! You can try many steps to improve your RAG system. We recommend doing so in an iterative way: bring small changes to the system and see what improves performance.\n",
    "\n",
    "### Setting up an evaluation pipeline\n",
    "\n",
    "- πŸ’¬ \"You cannot improve the model performance that you do not measure\", said Gandhi... or at least Llama2 told me he said it. Anyway, you should absolutely start by measuring performance: this means building a small evaluation dataset, then monitor the performance of your RAG system on this evaluation dataset.\n",
    "\n",
    "### Improving the retriever\n",
    "\n",
    "πŸ› οΈ __You can use these options to tune the results:__\n",
    "\n",
    "- Tune the chunking method:\n",
    "    - Size of the chunks\n",
    "    - Method: split on different separators, use [semantic chunking](https://python.langchain.com/docs/modules/data_connection/document_transformers/semantic-chunker)...\n",
    "- Change the embedding model\n",
    "\n",
    "πŸ‘·β€β™€οΈ __More could be considered:__\n",
    "- Try another chunking method, like semantic chunking\n",
    "- Change the index used (here, FAISS)\n",
    "- Query expansion: reformulate the user query in slightly different ways to retrieve more documents.\n",
    "\n",
    "### Improving the reader\n",
    "\n",
    "πŸ› οΈ __Here you can try the following options to improve results:__\n",
    "- Tune the prompt\n",
    "- Switch reranking on/off\n",
    "- Choose a more powerful reader model\n",
    "\n",
    "πŸ’‘ __Many options could be considered here to further improve the results:__\n",
    "- Compress the retrieved context to keep only the most relevant parts to answer the query.\n",
    "- Extend the RAG system to make it more user-friendly:\n",
    "    - cite source\n",
    "    - make conversational"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "provenance": []
  },
  "kernelspec": {
   "display_name": "ml2",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}