poudel commited on
Commit
5e57679
·
verified ·
1 Parent(s): f148078

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -2
app.py CHANGED
@@ -1,17 +1,26 @@
 
 
 
 
 
 
 
 
1
 
2
  import gradio as gr
3
  import pandas as pd
4
  import numpy as np
5
  from models.neural_network.inference import load_model_and_preprocessor
6
 
7
-
8
  # Load the pre-trained model and preprocessor
9
  nn_model, nn_preprocessor = load_model_and_preprocessor('nn_model.keras', 'nn_preprocessor.pkl')
10
 
11
  # Load the unique aircraft data and airport distances
12
  aircraft_data = pd.read_csv('aircraft_data.csv').drop_duplicates(subset='model')
13
- airport_data = pd.read_csv('airport_distances.csv')
14
 
 
 
15
 
16
 
17
  def predict_fuel_burn(model_name, origin, destination, seats, distance):
 
1
+ import sys
2
+ import os
3
+
4
+ # Add the path to the project directory where the 'models' folder is located
5
+ sys.path.append(os.path.dirname(os.path.abspath(__file__)))
6
+
7
+ # Now you can import the model as usual
8
+ from models.neural_network.inference import load_model_and_preprocessor
9
 
10
  import gradio as gr
11
  import pandas as pd
12
  import numpy as np
13
  from models.neural_network.inference import load_model_and_preprocessor
14
 
 
15
  # Load the pre-trained model and preprocessor
16
  nn_model, nn_preprocessor = load_model_and_preprocessor('nn_model.keras', 'nn_preprocessor.pkl')
17
 
18
  # Load the unique aircraft data and airport distances
19
  aircraft_data = pd.read_csv('aircraft_data.csv').drop_duplicates(subset='model')
20
+ aircraft_dict = aircraft_data.set_index('model').to_dict(orient='index')
21
 
22
+ airport_data = pd.read_csv('airport_distances.csv')
23
+ airport_dict = airport_data.set_index(['Origin_Airport', 'Destination_Airport']).to_dict(orient='index')
24
 
25
 
26
  def predict_fuel_burn(model_name, origin, destination, seats, distance):